1. Characterization of Diamond and Silicon Carbide Detectors With Fission Fragments
- Author
-
M. L. Gallin-Martel, Y. H. Kim, L. Abbassi, A. Bes, C. Boiano, S. Brambilla, J. Collot, G. Colombi, T. Crozes, S. Curtoni, D. Dauvergne, C. Destouches, F. Donatini, L. Gallin-Martel, O. Ghouini, J. Y. Hostachy, Ł. W. Iskra, M. Jastrzab, G. Kessedjian, U. Köster, A. Lacoste, A. Lyoussi, S. Marcatili, J. F. Motte, J. F. Muraz, T. Nowak, L. Ottaviani, J. Pernot, A. Portier, W. Rahajandraibe, M. Ramdhane, M. Rydygier, C. Sage, A. Tchoualack, L. Tribouilloy, M. Yamouni, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut Laue-Langevin (ILL), ILL, Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), CEA Cadarache, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Nanofab (Nanofab), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), AUTRES, Optique et microscopies (POM), Polish Academy of Sciences (PAN), Semi-conducteurs à large bande interdite (SC2G), ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011), Nanofabrication (NEEL - Nanofab), Istituto Nazionale di Fisica Nucleare, Sezione di Milano (INFN), Istituto Nazionale di Fisica Nucleare (INFN), Optique & Microscopies (NEEL - POM), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and Semi-conducteurs à large bande interdite (NEEL - SC2G)
- Subjects
Materials science ,Silicon ,Fission ,Physics::Instrumentation and Detectors ,QC1-999 ,Materials Science (miscellaneous) ,silicon carbide detectors ,Biophysics ,chemistry.chemical_element ,General Physics and Astronomy ,engineering.material ,01 natural sciences ,radiation-hard detectors ,chemistry.chemical_compound ,solid-state detectors ,0103 physical sciences ,Silicon carbide ,Physical and Theoretical Chemistry ,Mathematical Physics ,010302 applied physics ,[PHYS]Physics [physics] ,fission fragment ,Spectrometer ,010308 nuclear & particles physics ,business.industry ,Physics ,Detector ,pulse height defect ,Diamond ,Neutron temperature ,chemistry ,Ionization chamber ,heavy-ion detectors ,engineering ,Optoelectronics ,diamond detectors ,business - Abstract
International audience; Experimental fission studies for reaction physics or nuclear spectroscopy can profit from fast, efficient, and radiation-resistant fission fragment (FF) detectors. When such experiments are performed in-beam in intense thermal neutron beams, additional constraints arise in terms of target-detector interface, beam-induced background, etc. Therefore, wide gap semi-conductor detectors were tested with the aim of developing innovative instrumentation for such applications. The detector characterization was performed with mass- and energy-separated fission fragment beams at the ILL (Institut Laue Langevin) LOHENGRIN spectrometer. Two single crystal diamonds, three polycrystalline and one diamond-on-iridium as well as a silicon carbide detector were characterized as solid state ionization chamber for FF detection. Timing measurements were performed with a 500-µm thick single crystal diamond detector read out by a broadband amplifier. A timing resolution of ∼10.2 ps RMS was obtained for FF with mass A = 98 at 90 MeV kinetic energy. Using a spectroscopic preamplifier developed at INFN-Milano, the energy resolution measured for the same FF was found to be slightly better for a ∼50-µm thin single crystal diamond detector (∼1.4% RMS) than for the 500-µm thick one (∼1.6% RMS), while a value of 3.4% RMS was obtained with the 400-µm silicon carbide detector. The Pulse Height Defect (PHD), which is significant in silicon detectors, was also investigated with the two single crystal diamond detectors. The comparison with results from α and triton measurements enabled us to conclude that PHD leads to ∼50% loss of the initial generated charge carriers for FF. In view of these results, a possible detector configuration and integration for in-beam experiments has been discussed.
- Published
- 2021
- Full Text
- View/download PDF