1. Impact of Isolated Atmospheric Aging processes on the Cloud Condensation Nuclei-activation of Soot Particles
- Author
-
Franz Friebel, Prem Lobo, David Neubauer, Ulrike Lohmann, Saskia Drossaart van Dusseldorp, Evelyn Mühlhofer, and Amewu A. Mensah
- Subjects
13. Climate action ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,0210 nano-technology ,01 natural sciences ,0104 chemical sciences - Abstract
The largest contributors to the uncertainty in assessing the anthropogenic contribution in radiative forcing are the direct and indirect effects of aerosol particles on the Earth's radiative budget. Soot particles are of special interest since their properties can change significantly due to aging processes once they are emitted to the atmosphere. Probably the largest obstacle for the investigation of these processes in the laboratory is the long atmospheric lifetime of one week, demanding tailored experiments that cover this time span. This work presents results on the ability of two types of soot to act as cloud condensation nuclei (CCN) after exposure to atmospherically relevant levels of ozone and humidity. Aging times of up to 12 h were achieved by successful application of the continuous-flow stirred tank reactor (CSTR) concept while allowing for size-selection of particles prior to the aging step. 100 nm particles rich in organic carbon (OC) that were initially CCN-inactive showed significant CCN-activity at supersaturations (SS) down to 0.3 % after 10 h of exposure to 200 ppb of ozone. While this process was not affected by different levels of relative humidity in the range 5–75 %, a high sensitivity towards the ambient/reaction temperature was observed. Soot particles with a lower OC-content demanded an approximately four-fold longer aging duration to show CCN-activity for the same SS. Prior to the slow change in the CCN-activity, a rapid increase in the particle diameter was detected which occurred within several minutes. This study highlights the applicability of the CSTR-approach for the simulation of atmospheric aging processes, as aging durations beyond 12 h can be achieved in comparably small aerosol chamber volumes (
- Published
- 2019
- Full Text
- View/download PDF