1. Photobiocatalytic Oxyfunctionalization with High Reaction Rate using a Baeyer–Villiger Monooxygenase from Burkholderia xenovorans in Metabolically Engineered Cyanobacteria
- Author
-
Elif Erdem, Lenny Malihan-Yap, Leen Assil-Companioni, Hanna Grimm, Giovanni Davide Barone, Carole Serveau-Avesque, Agnes Amouric, Katia Duquesne, Véronique de Berardinis, Yagut Allahverdiyeva, Véronique Alphand, Robert Kourist, Institut des Sciences Moléculaires de Marseille (ISM2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Graz University of Technology [Graz] (TU Graz), Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto = University of Porto, Instituto de Biologia Molecular e Celular - institute for molecular and cell biology [Porto, Portugal] (IBMC), Genoscope - Centre national de séquençage [Evry] (GENOSCOPE), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), University of Turku, Génomique métabolique (UMR 8030), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
photosynthesis ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,biocatalysis ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,010405 organic chemistry ,[CHIM.CATA]Chemical Sciences/Catalysis ,General Chemistry ,010402 general chemistry ,enzyme catalysis ,cyanobacteria ,01 natural sciences ,Catalysis ,0104 chemical sciences ,Baeyer−Villiger oxidation ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Baeyer−Villiger monooxygenases (BVMOs) catalyze the oxidation of ketones to lactones under very mild reaction conditions. This enzymatic route is hindered by the requirement of a stoichiometric supply of auxiliary substrates for cofactor recycling and difficulties with supplying the necessary oxygen. The recombinant production of BVMO in cyanobacteria allows the substitution of auxiliary organic cosubstrates with water as an electron donor and the utilization of oxygen generated by photosynthetic water splitting. Herein, we report the identification of a BVMO from Burkholderia xenovorans (BVMO Xeno) that exhibits higher reaction rates in comparison to currently identified BVMOs. We report a 10fold increase in specific activity in comparison to cyclohexanone monooxygenase (CHMO Acineto) in Synechocystis sp. PCC 6803 (25 vs 2.3 U g DCW −1 at an optical density of OD 750 = 10) and an initial rate of 3.7 ± 0.2 mM h −1. While the cells containing CHMO Acineto showed a considerable reduction of cyclohexanone to cyclohexanol, this unwanted side reaction was almost completely suppressed for BVMO Xeno , which was attributed to the much faster lactone formation and a 10-fold lower K M value of BVMO Xeno toward cyclohexanone. Furthermore, the whole-cell catalyst showed outstanding stereoselectivity. These results show that, despite the self-shading of the cells, high specific activities can be obtained at elevated cell densities and even further increased through manipulation of the photosynthetic electron transport chain (PETC). The obtained rates of up to 3.7 mM h −1 underline the usefulness of oxygenic cyanobacteria as a chassis for enzymatic oxidation reactions. The photosynthetic oxygen evolution can contribute to alleviating the highly problematic oxygen mass-transfer limitation of oxygendependent enzymatic processes.
- Published
- 2021