1. Entropy solutions of anisotropic elliptic nonlinear obstacle problem with measure data
- Author
-
Hicham Redwane, Youssef Akdim, and Abdelhafid Salmani
- Subjects
Physics ,Applied Mathematics ,General Mathematics ,010102 general mathematics ,Mathematics::Analysis of PDEs ,01 natural sciences ,Omega ,010305 fluids & plasmas ,Combinatorics ,Nonlinear system ,0103 physical sciences ,Obstacle problem ,Entropy (information theory) ,Nabla symbol ,0101 mathematics ,Anisotropy - Abstract
We prove the existence of an entropy solution for a class of nonlinear anisotropic elliptic unilateral problem associated to the following equation $$\begin{aligned} -\sum _{i=1}^{N} \partial _i a_i(x,u, \nabla u) -\sum _{i=1}^{N}\partial _{i}\phi _{i}( u)=\mu , \end{aligned}$$where the right hand side $$\mu $$ belongs to $$L^{1}(\Omega )+ W^{-1, \vec {p'}}(\Omega )$$. The operator $$-\sum _{i=1}^{N} \partial _i a_i(x,u, \nabla u) $$ is a Leray–Lions anisotropic operator and $$\phi _{i} \in C^{0}({\mathbb {R}}, {\mathbb {R}})$$.
- Published
- 2019