1. Classification of scaling limits of uniform quadrangulations with a boundary
- Author
-
Grégory Miermont, Erich Baur, Gourab Ray, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics and Statistics, University of Victoria, Canada, ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014), ANR-15-CE40-0013,Liouville,Géométrie quantique de Liouville et flots turbulents(2015), and École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,Brownian disk ,Gromov–Hausdorff convergence ,05C80 ,Boundary (topology) ,Brownian tree ,01 natural sciences ,010104 statistics & probability ,Random tree ,Planar map ,FOS: Mathematics ,scaling limit ,0101 mathematics ,60D05 ,Scaling ,Brownian motion ,Mathematics ,Probability (math.PR) ,010102 general mathematics ,Mathematical analysis ,60D05, 60F17, 05C80 ,quadrangulation ,Coupling (probability) ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Metric space ,Scaling limit ,60F17 ,Brownian map ,Statistics, Probability and Uncertainty ,Mathematics - Probability - Abstract
We study non-compact scaling limits of uniform random planar quadrangulations with a boundary when their size tends to infinity. Depending on the asymptotic behavior of the boundary size and the choice of the scaling factor, we observe different limiting metric spaces. Among well-known objects like the Brownian plane or the infinite continuum random tree, we construct two new one-parameter families of metric spaces that appear as scaling limits: the Brownian half-plane with skewness parameter $\theta$ and the infinite-volume Brownian disk of perimeter $\sigma$. We also obtain various coupling and limit results clarifying the relation between these objects., Comment: 91 pages, 12 figures
- Published
- 2019
- Full Text
- View/download PDF