1. A note on $$\pi $$-partial characters of $$\pi $$-separable groups
- Author
-
Yong Yang and Xiaoyou Chen
- Subjects
Combinatorics ,Character (mathematics) ,010505 oceanography ,Group (mathematics) ,General Mathematics ,010102 general mathematics ,Pi ,Prime number ,0101 mathematics ,01 natural sciences ,0105 earth and related environmental sciences ,Mathematics ,Separable space - Abstract
Let $$\pi $$ be a set of prime numbers and G be a $$\pi $$ -separable group. If $$\varphi (1)_{\pi '}^{2}$$ divides $$|G: \ker \varphi |_{\pi '}$$ for every $$\pi $$ -partial character $$\varphi \in \mathrm{I}_{\pi }(G)$$ , then G has a normal Hall $$\pi '$$ -subgroup, where $$\varphi (1)_{\pi '}$$ denotes the $$\pi '$$ -part of $$\varphi (1)$$ and $$\mathrm{I}_{\pi }(G)$$ is the set of irreducible $$\pi $$ -partial characters of G.
- Published
- 2021
- Full Text
- View/download PDF