1. Weighted Caffarelli–Kohn–Nirenberg type inequalities related to Grushin type operators
- Author
-
Wenjuan Li and Manli Song
- Subjects
weighted hardy–sobolev inequality ,Physics ,QA299.6-433 ,010102 general mathematics ,Mathematics::Analysis of PDEs ,Type (model theory) ,35h20 ,01 natural sciences ,010101 applied mathematics ,Combinatorics ,Operator (computer programming) ,grushin type operator ,Mathematics::Metric Geometry ,0101 mathematics ,26d10 ,Analysis ,weighted caffarelli–kohn–nirenberg type inequality - Abstract
We consider the Grushin type operator onℝxd×ℝyk{\mathbb{R}^{d}_{x}\times\mathbb{R}^{k}_{y}}of the formGμ=∑i=1d∂xi2+(∑i=1dxi2)2μ∑j=1k∂yj2G_{\mu}=\sum_{i=1}^{d}\partial_{x_{i}}^{2}+\Bigl{(}\sum_{i=1}^{d}x_{i}^{2}% \Bigr{)}^{2\mu}\sum_{j=1}^{k}\partial_{y_{j}}^{2}and derive weighted Hardy–Sobolev type inequalities and weighted Caffarelli–Kohn–Nirenberg type inequalities related toGμ{G_{\mu}}.
- Published
- 2016
- Full Text
- View/download PDF