1. Asymptotics of linear differential systems and application to quasinormal modes of nonrotating black holes
- Author
-
David Langlois, Karim Noui, Hugo Roussille, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut Denis Poisson (IDP), Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO)
- Subjects
High Energy Physics - Theory ,perturbation: asymptotic behavior ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,black hole: perturbation ,higher-order ,gravitation: model ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,General Relativity and Quantum Cosmology ,horizon ,0103 physical sciences ,general relativity ,black hole: Schwarzschild ,010306 general physics ,numerical calculations ,black hole: asymptotic behavior ,010308 nuclear & particles physics ,background ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,quasinormal mode ,field equations ,boundary condition ,High Energy Physics - Theory (hep-th) ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Schroedinger equation ,spectral ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The traditional approach to perturbations of nonrotating black holes in General Relativity uses the reformulation of the equations of motion into a radial second-order Schr\"odinger-like equation, whose asymptotic solutions are elementary. Imposing specific boundary conditions at spatial infinity and near the horizon defines, in particular, the quasi-normal modes of black holes. For more complicated equations of motion, as encountered for instance in modified gravity models with different background solutions and/or additional degrees of freedom, we present a new approach that analyses directly the first-order differential system in its original form and extracts the asymptotic behaviour of perturbations, without resorting to a second-order reformulation. As a pedagogical illustration, we apply this treatment to the perturbations of Schwarzschild black holes and then show that the standard quasi-normal modes can be obtained numerically by solving this first-order system with a spectral method. This new approach paves the way for a generic treatment of the asymptotic behaviour of black hole perturbations and the identification of quasi-normal modes in theories of modified gravity., Comment: v2: version accepted for publication in Physical Review D
- Published
- 2021
- Full Text
- View/download PDF