61 results on '"Laura Cardani"'
Search Results
2. CUORE opens the door to tonne-scale cryogenics experiments
- Author
-
L. Canonica, L. Marini, Kevin Hickerson, J. Schmidt, Massimiliano Clemenza, Carlo Cosmelli, S. Copello, L. Gladstone, M. Guerzoni, L. Ma, J. Johnston, A. Leder, M. Iannone, Irene Nutini, Paolo Carniti, Vladimir Datskov, R. J. Creswick, M. M. Deninno, G. Fantini, F. Bellini, I. C. Bandac, Yu-Gang Ma, D. Santone, V. Sharma, C. Brofferio, P. J. Mosteiro, A. Caminata, Ezio Previtali, B. Welliver, Evelyn Ferri, H. Z. Huang, G. Keppel, K. E. Lim, X. G. Cao, F. Bragazzi, Ettore Fiorini, V. Novati, C. Rusconi, N. Chott, T. Wise, C. Crescentini, R. Gaigher, L. Zanotti, Andrea Giachero, C. Maiano, N. Moggi, C. Martinez Amaya, S. S. Nagorny, A. Pelosi, G. Piperno, D. Q. Adams, L. Risegari, K. Alfonso, F. Terranova, Davide Chiesa, C. Rosenfeld, Deqing Fang, S. Pagan, S. Dell'Oro, M. L. Di Vacri, D. Mayer, Samuele Sangiorgio, Stefano Nisi, P. T. Surukuchi, S. Morganti, S. Zucchelli, J. Camilleri, A. Nucciotti, M. Sisti, P. Gorla, E. V. Hansen, F. Ferroni, C. Tomei, Elena Sala, L. Ioannucci, D. Speller, F. Alessandria, M. I. Martínez, Eugene E. Haller, C. Alduino, F. Rimondi, G. Ceruti, K. Wilson, L. Taffarello, Marisa Pedretti, R. Hennings-Yeomans, S. Pirro, Carlo Ligi, M. Faverzani, M. Beretta, Y. Mei, M. Tessaro, Jeffrey W. Beeman, M. Capodiferro, A. Bersani, N. D. Scielzo, M. Barucci, L. Cappelli, D. Biare, C. J. Davis, A. Camacho, Jonathan Ouellet, D. Conventi, J. Wallig, K. M. Heeger, L. Pagnanini, A. Giuliani, G. Bari, M. Cariello, Lindley Winslow, A. Campani, S. L. Wagaarachchi, M. Maino, Guoqiang Zhang, M. Carrettoni, R. Mazza, A. Branca, A. Bryant, J. Nikkel, C. Pira, H.W. Wang, M. Perego, T. I. Banks, S. Zimmermann, Ke Han, Reina H. Maruyama, S. Ghislandi, T. O'Donnell, S. Di Domizio, Simone Capelli, R. W. Kadel, Stuart J. Freedman, G. Ventura, A. Drobizhev, C. Bulfon, C. Zarra, Laura Cardani, V. Dompè, M. Balata, L. Di Paolo, A. D'Addabbo, L. Pattavina, B. K. Fujikawa, Stefano Pozzi, Alan R. Smith, D. Orlandi, Larissa M. Ejzak, M. Vignati, B. X. Zhu, V. Pettinacci, L. Kogler, E. Celi, L. Tatananni, S.H. Fu, E. Andreotti, M. A. Franceschi, R. Cereseto, I. Dafinei, M. Sakai, D. D'Aguanno, F. Stivanello, R. G. Huang, D. Schaeffer, C. Guandalini, F. Orio, Vasundhara Singh, B. Schmidt, B. S. Wang, O. Azzolini, Kai Vetter, M. Olcese, Jeremy S. Cushman, V. Palmieri, Eric B. Norman, M. Guetti, T. Napolitano, M. Biassoni, F. Del Corso, R. Faccini, Giovanni Benato, A. Buccheri, C. Salvioni, Yu. G. Kolomensky, R. Pedrotta, Lorenzo Cassina, C. Nones, A. Puiu, Marco Pallavicini, S. Quitadamo, G. Pessina, James R. Wilson, R. Liu, Massimiliano Nastasi, M. Pavan, E. Olivieri, L. Gironi, F. T. Avignone, Claudio Gotti, N. Casali, F. Reindl, Oliviero Cremonesi, J. Goett, M. Tenconi, C. Pagliarone, C. Rossi, A. Chiarini, C. Bucci, T. D. Gutierrez, Adams, D, Alduino, C, Alessandria, F, Alfonso, K, Andreotti, E, Avignone, F, Azzolini, O, Balata, M, Bandac, I, Banks, T, Bari, G, Barucci, M, Beeman, J, Bellini, F, Benato, G, Beretta, M, Bersani, A, Biare, D, Biassoni, M, Bragazzi, F, Branca, A, Brofferio, C, Bryant, A, Buccheri, A, Bucci, C, Bulfon, C, Camacho, A, Camilleri, J, Caminata, A, Campani, A, Canonica, L, Cao, X, Capelli, S, Capodiferro, M, Cappelli, L, Cardani, L, Cariello, M, Carniti, P, Carrettoni, M, Casali, N, Cassina, L, Celi, E, Cereseto, R, Ceruti, G, Chiarini, A, Chiesa, D, Chott, N, Clemenza, M, Conventi, D, Copello, S, Cosmelli, C, Cremonesi, O, Crescentini, C, Creswick, R, Cushman, J, D'Addabbo, A, D'Aguanno, D, Dafinei, I, Datskov, V, Davis, C, Corso, F, Dell'Oro, S, Deninno, M, Di Domizio, S, Dompe, V, Di Vacri, M, Di Paolo, L, Drobizhev, A, Ejzak, L, Faccini, R, Fang, D, Fantini, G, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fu, S, Fujikawa, B, Gaigher, R, Ghislandi, S, Giachero, A, Gironi, L, Giuliani, A, Gladstone, L, Goett, J, Gorla, P, Gotti, C, Guandalini, C, Guerzoni, M, Guetti, M, Gutierrez, T, Haller, E, Han, K, Hansen, E, Heeger, K, Hennings-Yeomans, R, Hickerson, K, Huang, R, Huang, H, Iannone, M, Ioannucci, L, Johnston, J, Kadel, R, Keppel, G, Kogler, L, Kolomensky, Y, Leder, A, Ligi, C, Lim, K, Liu, R, Ma, L, Ma, Y, Maiano, C, Maino, M, Marini, L, Martinez, M, Amaya, C, Maruyama, R, Mayer, D, Mazza, R, Mei, Y, Moggi, N, Morganti, S, Mosteiro, P, Nagorny, S, Napolitano, T, Nastasi, M, Nikkel, J, Nisi, S, Nones, C, Norman, E, Novati, V, Nucciotti, A, Nutini, I, O'Donnell, T, Olcese, M, Olivieri, E, Orio, F, Orlandi, D, Ouellet, J, Pagan, S, Pagliarone, C, Pagnanini, L, Pallavicini, M, Palmieri, V, Pattavina, L, Pavan, M, Pedretti, M, Pedrotta, R, Pelosi, A, Perego, M, Pessina, G, Pettinacci, V, Piperno, G, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Quitadamo, S, Reindl, F, Rimondi, F, Risegari, L, Rosenfeld, C, Rossi, C, Rusconi, C, Sakai, M, Sala, E, Salvioni, C, Sangiorgio, S, Santone, D, Schaeffer, D, Schmidt, B, Schmidt, J, Scielzo, N, Sharma, V, Singh, V, Sisti, M, Smith, A, Speller, D, Stivanello, F, Surukuchi, P, Taffarello, L, Tatananni, L, Tenconi, M, Terranova, F, Tessaro, M, Tomei, C, Ventura, G, Vetter, K, Vignati, M, Wagaarachchi, S, Wallig, J, Wang, B, Wang, H, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Wise, T, Zanotti, L, Zarra, C, Zhang, G, Zhu, B, Zimmermann, S, Zucchelli, S, Adams D.Q., Alduino C., Alessandria F., Alfonso K., Andreotti E., Avignone F.T., Azzolini O., Balata M., Bandac I., Banks T.I., Bari G., Barucci M., Beeman J.W., Bellini F., Benato G., Beretta M., Bersani A., Biare D., Biassoni M., Bragazzi F., Branca A., Brofferio C., Bryant A., Buccheri A., Bucci C., Bulfon C., Camacho A., Camilleri J., Caminata A., Campani A., Canonica L., Cao X.G., Capelli S., Capodiferro M., Cappelli L., Cardani L., Cariello M., Carniti P., Carrettoni M., Casali N., Cassina L., Celi E., Cereseto R., Ceruti G., Chiarini A., Chiesa D., Chott N., Clemenza M., Conventi D., Copello S., Cosmelli C., Cremonesi O., Crescentini C., Creswick R.J., Cushman J.S., D'Addabbo A., D'Aguanno D., Dafinei I., Datskov V., Davis C.J., Del Corso F., Dell'Oro S., Deninno M.M., Di Domizio S., Dompe V., Di Vacri M.L., Di Paolo L., Drobizhev A., Ejzak L., Faccini R., Fang D.Q., Fantini G., Faverzani M., Ferri E., Ferroni F., Fiorini E., Franceschi M.A., Freedman S.J., Fu S.H., Fujikawa B.K., Gaigher R., Ghislandi S., Giachero A., Gironi L., Giuliani A., Gladstone L., Goett J., Gorla P., Gotti C., Guandalini C., Guerzoni M., Guetti M., Gutierrez T.D., Haller E.E., Han K., Hansen E.V., Heeger K.M., Hennings-Yeomans R., Hickerson K.P., Huang R.G., Huang H.Z., Iannone M., Ioannucci L., Johnston J., Kadel R., Keppel G., Kogler L., Kolomensky Y.G., Leder A., Ligi C., Lim K.E., Liu R., Ma L., Ma Y.G., Maiano C., Maino M., Marini L., Martinez M., Amaya C.M., Maruyama R.H., Mayer D., Mazza R., Mei Y., Moggi N., Morganti S., Mosteiro P.J., Nagorny S.S., Napolitano T., Nastasi M., Nikkel J., Nisi S., Nones C., Norman E.B., Novati V., Nucciotti A., Nutini I., O'Donnell T., Olcese M., Olivieri E., Orio F., Orlandi D., Ouellet J.L., Pagan S., Pagliarone C.E., Pagnanini L., Pallavicini M., Palmieri V., Pattavina L., Pavan M., Pedretti M., Pedrotta R., Pelosi A., Perego M., Pessina G., Pettinacci V., Piperno G., Pira C., Pirro S., Pozzi S., Previtali E., Puiu A., Quitadamo S., Reindl F., Rimondi F., Risegari L., Rosenfeld C., Rossi C., Rusconi C., Sakai M., Sala E., Salvioni C., Sangiorgio S., Santone D., Schaeffer D., Schmidt B., Schmidt J., Scielzo N.D., Sharma V., Singh V., Sisti M., Smith A.R., Speller D., Stivanello F., Surukuchi P.T., Taffarello L., Tatananni L., Tenconi M., Terranova F., Tessaro M., Tomei C., Ventura G., Vetter K.J., Vignati M., Wagaarachchi S.L., Wallig J., Wang B.S., Wang H.W., Welliver B., Wilson J., Wilson K., Winslow L.A., Wise T., Zanotti L., Zarra C., Zhang G.Q., Zhu B.X., Zimmermann S., Zucchelli S., Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, and CUORE
- Subjects
Cryostat ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Cryogenic temperatures ,Dilution refrigerator ,Low temperature calorimeter ,Neutrinoless double beta decay ,Rare event searches ,Ton-scale detector ,Cryogenic temperatures, Neutrinoless double beta decay, Dilution refrigerator, Ton-scale detector, Low temperature calorimeter, Rare event searches, cryogenics, CUORE performance ,Cryogenics ,Rare event searche ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,CUORE ,double-beta decay: (0neutrino) ,Double beta decay ,0103 physical sciences ,Cryogenic particle detectors ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,Aerospace engineering ,010306 general physics ,Nuclear Experiment ,activity report ,Physics ,010308 nuclear & particles physics ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cryogenic temperature ,Instrumentation and Detectors (physics.ins-det) ,CUORE performance ,Semiconductor detector ,cryogenics: design ,cryogenics ,Neutrino ,business ,performance - Abstract
The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution - comparable to semiconductor detectors - and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require ever greater exposures, which has driven them to ever larger cryogenic detectors, with the CUORE experiment being the first to reach a tonne-scale, mK-cooled, experimental mass. CUORE, designed to search for neutrinoless double beta decay, has been operational since 2017 at a temperature of about 10 mK. This result has been attained by the use of an unprecedentedly large cryogenic infrastructure called the CUORE cryostat: conceived, designed and commissioned for this purpose. In this article the main characteristics and features of the cryogenic facility developed for the CUORE experiment are highlighted. A brief introduction of the evolution of the field and of the past cryogenic facilities are given. The motivation behind the design and development of the CUORE cryogenic facility is detailed as are the steps taken toward realization, commissioning, and operation of the CUORE cryostat. The major challenges overcome by the collaboration and the solutions implemented throughout the building of the cryogenic facility will be discussed along with the potential improvements for future facilities. The success of CUORE has opened the door to a new generation of large-scale cryogenic facilities in numerous fields of science. Broader implications of the incredible feat achieved by the CUORE collaboration on the future cryogenic facilities in various fields ranging from neutrino and dark matter experiments to quantum computing will be examined., Comment: 45 pages, 14 figures
- Published
- 2022
- Full Text
- View/download PDF
3. Background identification in cryogenic calorimeters through $$\alpha -\alpha $$ delayed coincidences
- Author
-
Paolo Carniti, M. Biassoni, Massimiliano Nastasi, Stefano Nisi, P. Gorla, F. Ferroni, C. Tomei, A. Giuliani, Massimiliano Clemenza, M. Beretta, L. Pattavina, G. Keppel, C. Brofferio, Simone Capelli, S. Di Domizio, Laura Cardani, C. Rusconi, Davide Chiesa, L. Pagnanini, Stefano Pozzi, M. Pavan, Jeffrey W. Beeman, C. Nones, A. Puiu, M. Vignati, K. Schäffner, A. D'Addabbo, A. S. Zolotarova, I. Dafinei, V. Pettinacci, S. Pirro, D. Orlandi, O. Azzolini, Marco Pallavicini, G. Pessina, F. Bellini, Angelo Cruciani, Ezio Previtali, C. Bucci, Miriam Lucio Martinez, L. Gironi, S.S. Nagorny, Claudio Gotti, Oliviero Cremonesi, N. Casali, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Azzolini, O, Beeman, J, Bellini, F, Beretta, M, Biassoni, M, Brofferio, C, Bucci, C, Capelli, S, Cardani, L, Carniti, P, Casali, N, Chiesa, D, Clemenza, M, Cremonesi, O, Cruciani, A, Dafinei, I, D'Addabbo, A, Di Domizio, S, Ferroni, F, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Keppel, G, Martinez, M, Nagorny, S, Nastasi, M, Nisi, S, Nones, C, Orlandi, D, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rusconi, C, Schaffner, K, Tomei, C, Vignati, M, and Zolotarova, A
- Subjects
Physics ,Particle physics ,Physics - Instrumentation and Detectors ,background identification ,Physics and Astronomy (miscellaneous) ,010308 nuclear & particles physics ,QC770-798 ,Delayed coincidence ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Astrophysics ,01 natural sciences ,neutrinoless double beta decay ,QB460-466 ,Physics - Data Analysis, Statistics and Probability ,radioactivity ,Nuclear and particle physics. Atomic energy. Radioactivity ,Double beta decay ,low background ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Decay chain ,010306 general physics ,Nuclear Experiment ,Engineering (miscellaneous) ,[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis, Statistics and Probability [physics.data-an] - Abstract
Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of $$\alpha -\alpha $$ α - α delayed coincidences in $${}^{232}$$ 232 Th and $${}^{238}$$ 238 U decay chains, developed to investigate the contaminations of the ZnSe crystals in the CUPID-0 experiment. This method allows to disentangle surface and bulk contaminations of the detectors relying on the different probability to tag delayed coincidences as function of the $$\alpha $$ α decay position.
- Published
- 2021
- Full Text
- View/download PDF
4. Measurement of $^{216}$Po half-life with the CUPID-0 experiment
- Author
-
S. Di Domizio, Laura Cardani, Stefano Pozzi, A. Giuliani, Davide Chiesa, M. Vignati, Jeffrey W. Beeman, L. Pattavina, Massimiliano Clemenza, Simone Capelli, M. Pavan, A. D'Addabbo, M. Beretta, C. Brofferio, C. Rusconi, K. Schäffner, D. Orlandi, G. Keppel, V. Caracciolo, Stefano Nisi, F. Bellini, Paolo Carniti, P. Gorla, F. Ferroni, C. Tomei, V. Pettinacci, Massimiliano Nastasi, I. Colantoni, L. Pagnanini, S. S. Nagorny, Marco Pallavicini, G. Pessina, S. Pirro, C. Nones, A. Puiu, O. Azzolini, Angelo Cruciani, I. Dafinei, Ezio Previtali, Oliviero Cremonesi, Claudio Gotti, N. Casali, M. Biassoni, C. Bucci, Miriam Lucio Martinez, L. Gironi, A. S. Zolotarova, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Azzolini, O, Beeman, J, Bellini, F, Beretta, M, Biassoni, M, Brofferio, C, Bucci, C, Capelli, S, Cardani, L, Carniti, P, Caracciolo, V, Casali, N, Chiesa, D, Clemenza, M, Colantoni, I, Cremonesi, O, Cruciani, A, Dafinei, I, D'Addabbo, A, Di Domizio, S, Ferroni, F, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Keppel, G, Martinez, M, Nagorny, S, Nastasi, M, Nisi, S, Nones, C, Orlandi, D, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rusconi, C, Schäffner, K, Tomei, C, Vignati, M, and Zolotarova, A
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,QC1-999 ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Coincidence ,Cryogenic calorimeters ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Physics ,Sequence ,Basis (linear algebra) ,010308 nuclear & particles physics ,Event (computing) ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Delayed coincidence ,Half-life measurement ,Cryogenic calorimeter ,Algorithm - Abstract
Rare event physics demands very detailed background control, high-performance detectors, and custom analysis strategies. Cryogenic calorimeters combine all these ingredients very effectively, representing a promising tool for next-generation experiments. CUPID-0 is one of the most advanced examples of such a technique, having demonstrated its potential with several results obtained with limited exposure. In this paper, we present a further application. Exploiting the analysis of delayed coincidence, we can identify the signals caused by the $^{220}$Rn-$^{216}$Po decay sequence on an event-by-event basis. The analysis of these events allows us to extract the time differences between the two decays, leading to a new evaluation of $^{216}$ half-life, estimated as (143.3 $\pm$ 2.8) ms., 5 pages, 2 figures
- Published
- 2021
- Full Text
- View/download PDF
5. New Limit for Neutrinoless Double-Beta Decay of Mo100 from the CUPID-Mo Experiment
- Author
-
F. Charlieux, B. Schmidt, V. B. Brudanin, X. F. Navick, Luc Bergé, Jonathan Ouellet, B. Siebenborn, M. Pavan, I. Dafinei, V.I. Umatov, O. G. Polischuk, Virendra Singh, S. Pirro, M. de Combarieu, Yu. A. Borovlev, L. Gironi, C. Augier, S. V. Rozov, L. Ma, L. Dumoulin, V. Sanglard, M. Beretta, V. I. Tretyak, A. Leder, Davide Chiesa, M. De Jesus, K. Schäffner, Giovanni Benato, K. Eitel, H. Khalife, V.V. Kobychev, D. L. Helis, H. Z. Huang, D. Misiak, A. S. Barabash, A. S. Zolotarova, Ezio Previtali, P. Loaiza, A. Rojas, Ph. Camus, G. Pessina, B. Welliver, S. I. Konovalov, V.D. Grigorieva, J. A. Scarpaci, P. de Marcillac, N. Casali, E. Guerard, F.A. Danevich, E. Yakushev, L. Marini, D. V. Poda, F. Bellini, Haiping Peng, C. Nones, C. Tomei, Yao Shen, J. Johnston, R. G. Huang, E. Olivieri, M. Xue, P. Pari, Eric B. Norman, Laura Cardani, C. Rusconi, M. Gros, J. Gascon, L. Pattavina, B. K. Fujikawa, M. Kleifges, Federico Ferri, S. Marnieros, M. M. Zarytskyy, Alain Benoit, Ch. Bourgeois, E. Armengaud, S. Pozzi, M. Chapellier, T. Dixon, Lindley Winslow, A. Juillard, Matias Velázquez, L. Vagneron, A. Cazes, E. P. Makarov, R. Mariam, V.N. Shlegel, Yu. G. Kolomensky, B. Paul, A. Giuliani, Th. Redon, J. Billard, L. Pagnanini, and V. Novati
- Subjects
Physics ,Nuclear physics ,MAJORANA ,Double beta decay ,0103 physical sciences ,General Physics and Astronomy ,Limit (mathematics) ,Neutrino ,010306 general physics ,7. Clean energy ,01 natural sciences - Abstract
The CUPID-Mo experiment at the Laboratoire Souterrain de Modane (France) is a demonstrator for CUPID, the next-generation ton-scale bolometric 0νββ experiment. It consists of a 4.2 kg array of 20 enriched Li_{2}^{100}MoO_{4} scintillating bolometers to search for the lepton-number-violating process of 0νββ decay in ^{100}Mo. With more than one year of operation (^{100}Mo exposure of 1.17 kg×yr for physics data), no event in the region of interest and, hence, no evidence for 0νββ is observed. We report a new limit on the half-life of 0νββ decay in ^{100}Mo of T_{1/2}>1.5×10^{24} yr at 90% C.I. The limit corresponds to an effective Majorana neutrino mass ⟨m_{ββ}⟩
- Published
- 2021
- Full Text
- View/download PDF
6. Measurement of the 2νββ Decay Half-Life of Te130 with CUORE
- Author
-
V. Sharma, D. Speller, Deqing Fang, S. Morganti, J. Nikkel, S. H. Fu, P. T. Surukuchi, S. Zimmermann, Carlo Ligi, R. J. Creswick, A. Campani, L. Gironi, I. Nutini, C. Rosenfeld, J. Camilleri, Oliviero Cremonesi, Kai Vetter, P. Gorla, F. Ferroni, C. Tomei, Massimiliano Clemenza, Carlo Cosmelli, Monica Sisti, F. T. Avignone, B. S. Wang, A. Giuliani, Emanuele Ferri, C. Pagliarone, N. D. Scielzo, C. Brofferio, L. Pattavina, C. J. Davis, Silvia Capelli, S. Pozzi, F. Terranova, C. Nones, A. Puiu, Massimiliano Nastasi, S. Di Domizio, K. Wilson, Davide Chiesa, Lucia Canonica, A. Caminata, Ezio Previtali, Marco Pallavicini, C. Rusconi, B. Welliver, V. Dompè, F. Bellini, Jonathan Ouellet, G. Bari, H. Z. Huang, S. Pagan, Y. Mei, A. D'Addabbo, C. Bucci, L. Marini, T. D. Gutierrez, T. O'Donnell, J. Johnston, S. Copello, N. Moggi, Laura Cardani, Yu. G. Kolomensky, Luigi Cappelli, B. K. Fujikawa, Xiangyu Cao, G. Keppel, Samuele Sangiorgio, K. M. Heeger, A. Nucciotti, C. Alduino, S. Pirro, B. Schmidt, Stefano Zucchelli, S. Dell'Oro, Ke Han, Paolo Carniti, Reina H. Maruyama, Claudio Gotti, Stuart J. Freedman, M. Sakai, O. Azzolini, T. Napolitano, M. Pavan, N. Casali, James R. Wilson, G. Pessina, S. L. Wagaarachchi, V. Pettinacci, M. Vignati, M. Biassoni, I. Dafinei, E. Fiorini, Giovanni Benato, Yudi Ma, L. Pagnanini, Eric B. Norman, L. Taffarello, D. Q. Adams, K. Alfonso, D. Mayer, M. Faverzani, Lindley Winslow, Virendra Singh, L. Ma, C. Pira, G. Fantini, R. G. Huang, A. Branca, M. A. Franceschi, and A. Giachero
- Subjects
Physics ,Nuclear physics ,CUORE ,Double beta decay ,0103 physical sciences ,General Physics and Astronomy ,Half-life ,High Energy Physics::Experiment ,010306 general physics ,01 natural sciences ,Spectral line - Abstract
We measured two-neutrino double beta decay of $^{130}$Te using an exposure of 300.7 kg$\cdot$yr accumulated with the CUORE detector. Using a Bayesian analysis to fit simulated spectra to experimental data, it was possible to disentangle all the major background sources and precisely measure the two-neutrino contribution. The half-life is in agreement with past measurements with a strongly reduced uncertainty: $T^{2\nu}_{1/2} = 7.71^{+0.08}_{-0.06}\mathrm{(stat.)}^{+0.12}_{-0.15}\mathrm{(syst.)}\times10^{20}$ yr. This measurement is the most precise determination of the $^{130}$Te 2$\nu\beta\beta$ decay half-life to date.
- Published
- 2021
- Full Text
- View/download PDF
7. Search for Double-Beta Decay of $\mathrm{^{130}Te}$ to the $0^+$ States of $\mathrm{^{130}Xe}$ with CUORE
- Author
-
Davide Chiesa, S. Di Domizio, Laura Cardani, B. K. Fujikawa, Stefano Pozzi, M. Vignati, Massimiliano Clemenza, Carlo Cosmelli, A. Giuliani, Monica Sisti, C. Pagliarone, V. Sharma, S. Zimmermann, A. Branca, Deqing Fang, S. Dell'Oro, B. Schmidt, L. Pattavina, L. Pagnanini, B. S. Wang, C. Brofferio, Marco Pallavicini, Lindley Winslow, F. Terranova, S. Morganti, O. Azzolini, S. Copello, S. Pagan, Kai Vetter, G. Pessina, Paolo Carniti, C. Rusconi, Carlo Ligi, L. Taffarello, L. Ma, Virendra Singh, Yudi Ma, H. Z. Huang, C. Rosenfeld, S. Pirro, A. Campani, C. Pira, Ettore Fiorini, S. L. Wagaarachchi, Andrea Giachero, P. Gorla, F. Ferroni, J. Camilleri, Xiangyu Cao, C. Tomei, Ke Han, Reina H. Maruyama, Stuart J. Freedman, L. Canonica, L. Marini, D. Q. Adams, Simone Capelli, K. Alfonso, G. Keppel, D. Speller, D. Mayer, C. J. Davis, Y. Mei, C. Nones, A. Puiu, I. Dafinei, Irene Nutini, J. Johnston, V. Pettinacci, A. Caminata, V. Dompè, A. D'Addabbo, J. Nikkel, G. Fantini, K. M. Heeger, Ezio Previtali, P. T. Surukuchi, T. O'Donnell, Yu. G. Kolomensky, N. D. Scielzo, R. G. Huang, B. Welliver, K. Wilson, Jonathan Ouellet, G. Bari, E. Celi, M. A. Franceschi, S. Zucchelli, M. Faverzani, Evelyn Ferri, N. Moggi, Eric B. Norman, L. Cappelli, M. Sakai, T. Napolitano, Samuele Sangiorgio, Oliviero Cremonesi, A. Nucciotti, M. Biassoni, C. Alduino, Claudio Gotti, N. Casali, Giovanni Benato, C. Bucci, T. D. Gutierrez, L. Gironi, F. T. Avignone, F. Bellini, R. J. Creswick, M. Pavan, Massimiliano Nastasi, James R. Wilson, S. H. Fu, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, CUORE, and Département de Physique des Particules (ex SPP) (DPhP)
- Subjects
Particle physics ,experimental methods ,Physics and Astronomy (miscellaneous) ,FOS: Physical sciences ,Dirac Neutrino ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Neutrinoless Double Beta Decay ,7. Clean energy ,01 natural sciences ,Bayesian ,decay modes ,crystal ,CUORE ,background: low ,bolometer ,Double beta decay ,Neutrino ,0103 physical sciences ,excited state ,double-beta decay: (2neutrino) ,Beta (velocity) ,Sensitivity (control systems) ,bayesian analysis ,Nuclear Experiment (nucl-ex) ,Particle Physics ,010306 general physics ,Engineering (miscellaneous) ,Nuclear Experiment ,lepton number: violation ,excited states ,Physics ,010308 nuclear & particles physics ,Majorana Neutrino ,Gamma ray ,sensitivity ,Lepton number ,gamma ray: emission ,Excited state ,Double beta decay, excited states, bayesian analysis ,CUORE, Neutrinoless Double Beta Decay, Particle Physics, Neutrino, Majorana Neutrino, Dirac Neutrino - Abstract
The CUORE experiment is a large bolometric array searching for the lepton number violating neutrino-less double beta decay ($0\nu\beta\beta$) in the isotope $\mathrm{^{130}Te}$. In this work we present the latest results on two searches for the double beta decay (DBD) of $\mathrm{^{130}Te}$ to the first $0^{+}_2$ excited state of $\mathrm{^{130}Xe}$: the $0\nu\beta\beta$ decay and the Standard Model-allowed two-neutrinos double beta decay ($2\nu\beta\beta$). Both searches are based on a 372.5 kg$\times$yr TeO$_2$ exposure. The de-excitation gamma rays emitted by the excited Xe nucleus in the final state yield a unique signature, which can be searched for with low background by studying coincident events in two or more bolometers. The closely packed arrangement of the CUORE crystals constitutes a significant advantage in this regard. The median limit setting sensitivities at 90\% Credible Interval (C.I.) of the given searches were estimated as $\mathrm{S^{0\nu}_{1/2} = 5.6 \times 10^{24} \: \mathrm{yr}}$ for the ${0\nu\beta\beta}$ decay and $\mathrm{S^{2\nu}_{1/2} = 2.1 \times 10^{24} \: \mathrm{yr}}$ for the ${2\nu\beta\beta}$ decay. No significant evidence for either of the decay modes was observed and a Bayesian lower bound at $90\%$ C.I. on the decay half lives is obtained as: $\mathrm{(T_{1/2})^{0\nu}_{0^+_2} > 5.9 \times 10^{24} \: \mathrm{yr}}$ for the $0\nu\beta\beta$ mode and $\mathrm{(T_{1/2})^{2\nu}_{0^+_2} > 1.3 \times 10^{24} \: \mathrm{yr}}$ for the $2\nu\beta\beta$ mode. These represent the most stringent limits on the DBD of $^{130}$Te to excited states and improve by a factor $\sim5$ the previous results on this process., Comment: 13 pages, 6 figures
- Published
- 2021
- Full Text
- View/download PDF
8. Characterization of cubic Li 2100 MoO 4 crystals for the CUPID experiment
- Author
-
Federico Ferri, Stefano Dell'Oro, J. Camilleri, V. Shlegel, N. Casali, R. Rizzoli, F. Bellini, A. Ressa, J. A. Scarpaci, C. Augier, Goran Karapetrov, G. Fantini, P. Gras, M. I. Martínez, F.A. Danevich, L. Pagnanini, P. T. Surukuchi, A. Drobizhev, S. H. Fu, C. Oriol, I. Dafinei, T. O'Donnell, E. Figueroa-Feliciano, P. Loaiza, Jie Yang, S. Copello, Haiping Peng, Oliviero Cremonesi, L. Wang, A. Franceschi, C. Pagliarone, Davide Chiesa, Paolo Carniti, A. Juillard, Andrea Barresi, V.I. Tretyak, E. V. Hansen, M. Xue, S. Zucchelli, C. Pira, O. G. Polischuk, X. F. Navick, R. J. Creswick, L. Marini, K. Wilson, I. Colantoni, D. Misiak, C. Rusconi, J. Billard, D. V. Poda, J. Johnston, Jonathan Ouellet, A. Charrier, A. Cruciani, S. L. Wagaarachchi, G. Bari, F. Collamati, V. Yumatov, J. Gascon, C. C. Chang, Stefano Nisi, Changbo Fu, G. Pessina, S. Pirro, L. Pattavina, S. Marnieros, Jie Zhang, G. Wang, G. D'Imperio, A. Cazes, Yuting Liu, E. Celi, Massimiliano Clemenza, A. Tsymbaliuk, Monica Sisti, Valentyn Novosad, I. Nutini, S. Milana, R. Nipoti, C. Nones, A. Puiu, M. Chapellier, H. Z. Huang, V. G. Yefremenko, R. Mariam, B. Schmidt, G. Keppel, Yu. G. Kolomensky, Luigi Cappelli, D. Mayer, O. Tellier, L. Ma, Y. Mei, R. G. Huang, F. Mancarella, M. Faverzani, L. Dumoulin, M. Madhukuttan, H. Khalife, M. Gros, Kai Vetter, S. Di Domizio, D. Baudin, P. Pari, A. Armatol, Giovanni Benato, M. Beretta, Tomas Polakovic, L. Taffarello, Virendra Singh, Danielle Speller, Laura Cardani, K. M. Heeger, B. K. Fujikawa, E. Olivieri, Eric B. Norman, L. Yan, T. Napolitano, S. Pagan, M. Biassoni, B. Mauri, V. Pettinacci, M. de Combarieu, O. Azzolini, M. M. Zarytskyy, A. Giachero, Claudio Gotti, S. I. Konovalov, L. Gironi, Lindley Winslow, M. Pavan, James Nikkel, F. T. Avignone, Whitney Armstrong, V. Sanglard, L. Imbert, C. Bucci, T. D. Gutierrez, C. Brofferio, A. S. Barabash, Ezio Previtali, B. Welliver, P. de Marcillac, D. L. Helis, A. S. Zolotarova, Ke Han, Reina H. Maruyama, B. Paul, A. Giuliani, Silvia Capelli, Massimiliano Nastasi, James R. Wilson, M. De Jesus, E. Armengaud, V. Sharma, Matias Velázquez, V. V. Kobychev, L. Bergé, A. Branca, C. Rosenfeld, V. Boldrini, P. Gorla, F. Ferroni, C. Tomei, Emanuele Ferri, Joseph A. Formaggio, S. Pozzi, V. Dompè, A. D'Addabbo, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Rayonnement Matière de Saclay (IRAMIS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), CUPID, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Armatol A., Armengaud E., Armstrong W., Augier C., Avignone F.T., Azzolini O., Barabash A., Bari G., Barresi A., Baudin D., Bellini F., Benato G., Beretta M., Berge L., Biassoni M., Billard J., Boldrini V., Branca A., Brofferio C., Bucci C., Camilleri J., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Cazes A., Celi E., Chang C., Chapellier M., Charrier A., Chiesa D., Clemenza M., Colantoni I., Collamati F., Copello S., Cremonesi O., J.Creswick R., Cruciani A., D'Addabbo A., D'Imperio G., Dafinei I., A.Danevich F., deCombarieu M., DeJesus M., deMarcillac P., Dell'Oro S., DiDomizio S., Dompe V., Drobizhev A., Dumoulin L., Fantini G., Faverzani M., Ferri E., Ferri F., Ferroni F., Figueroa-Feliciano E., Formaggio J., Franceschi A., Fu C., Fu S., Fujikawa B.K., Gascon J., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gras P., Gros M., Gutierrez T.D., Han K., Hansen E.V., Heeger K.M., Helis D.L., Huang H.Z., Huang R.G., Imbert L., Johnston J., Juillard A., Karapetrov G., Keppel G., Khalife H., Kobychev V.V., Kolomensky Y.G., Konovalov S., Liu Y., Loaiza P., Ma L., Madhukuttan M., Mancarella F., Mariam R., Marini L., Marnieros S., Martinez M., Maruyama R.H., Mauri B., Mayer D., Mei Y., Milana S., Misiak D., Napolitano T., Nastasi M., Navick X.F., Nikkel J., Nipoti R., Nisi S., Nones C., Norman E.B., Novosad V., Nutini I., O'Donnell T., Olivieri E., Oriol C., Ouellet J.L., Pagan S., Pagliarone C., Pagnanini L., Pari P., Pattavina L., Paul B., Pavan M., Peng H., Pessina G., Pettinacci V., Pira C., Pirro S., V.Poda D., Polakovic T., Polischuk O.G., Pozzi S., Previtali E., Puiu A., Ressa A., Rizzoli R., Rosenfeld C., Rusconi C., Sanglard V., Scarpaci J.A., Schmidt B., Sharma V., Shlegel V., Singh V., Sisti M., Speller D., Surukuchi P.T., Taffarello L., Tellier O., Tomei C., Tretyak V.I., Tsymbaliuk A., Velazquez M., Vetter K.J., Wagaarachchi S.L., Wang G., Wang L., Welliver B., Wilson J., Wilson K., Winslow L.A., Xue M., Yan L., Yang J., Yefremenko V., Yumatov V., Zarytskyy M.M., Zhang J., Zolotarova A., Zucchelli S., Armatol, A, Armengaud, E, Armstrong, W, Augier, C, Avignone, F, Azzolini, O, Barabash, A, Bari, G, Barresi, A, Baudin, D, Bellini, F, Benato, G, Beretta, M, Berge, L, Biassoni, M, Billard, J, Boldrini, V, Branca, A, Brofferio, C, Bucci, C, Camilleri, J, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cazes, A, Celi, E, Chang, C, Chapellier, M, Charrier, A, Chiesa, D, Clemenza, M, Colantoni, I, Collamati, F, Copello, S, Cremonesi, O, J. Creswick, R, Cruciani, A, D'Addabbo, A, D'Imperio, G, Dafinei, I, A. Danevich, F, Decombarieu, M, Dejesus, M, Demarcillac, P, Dell'Oro, S, Didomizio, S, Dompe, V, Drobizhev, A, Dumoulin, L, Fantini, G, Faverzani, M, Ferri, E, Ferri, F, Ferroni, F, Figueroa-Feliciano, E, Formaggio, J, Franceschi, A, Fu, C, Fu, S, Fujikawa, B, Gascon, J, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gras, P, Gros, M, Gutierrez, T, Han, K, Hansen, E, Heeger, K, Helis, D, Huang, H, Huang, R, Imbert, L, Johnston, J, Juillard, A, Karapetrov, G, Keppel, G, Khalife, H, Kobychev, V, Kolomensky, Y, Konovalov, S, Liu, Y, Loaiza, P, Ma, L, Madhukuttan, M, Mancarella, F, Mariam, R, Marini, L, Marnieros, S, Martinez, M, Maruyama, R, Mauri, B, Mayer, D, Mei, Y, Milana, S, Misiak, D, Napolitano, T, Nastasi, M, Navick, X, Nikkel, J, Nipoti, R, Nisi, S, Nones, C, Norman, E, Novosad, V, Nutini, I, O'Donnell, T, Olivieri, E, Oriol, C, Ouellet, J, Pagan, S, Pagliarone, C, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, V. Poda, D, Polakovic, T, Polischuk, O, Pozzi, S, Previtali, E, Puiu, A, Ressa, A, Rizzoli, R, Rosenfeld, C, Rusconi, C, Sanglard, V, Scarpaci, J, Schmidt, B, Sharma, V, Shlegel, V, Singh, V, Sisti, M, Speller, D, Surukuchi, P, Taffarello, L, Tellier, O, Tomei, C, Tretyak, V, Tsymbaliuk, A, Velazquez, M, Vetter, K, Wagaarachchi, S, Wang, G, Wang, L, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Xue, M, Yan, L, Yang, J, Yefremenko, V, Yumatov, V, Zarytskyy, M, Zhang, J, Zolotarova, A, and Zucchelli, S
- Subjects
Mo-100 ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,background: induced ,Physics::Instrumentation and Detectors ,Monte Carlo method ,measurement methods ,bolometers, neutrinoless double beta decay ,energy resolution ,Parameter space ,01 natural sciences ,Nuclear Experiment (nucl-ex) ,Double Beta Decay ,Nuclear Experiment ,background: suppression ,Physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ,molybdenum: oxygen ,Double-beta decay detector ,Low Temperature Detector ,lithium ,Scintillation counter ,Neutrino ,photon: yield ,numerical calculations: Monte Carlo ,bolometers ,FOS: Physical sciences ,Cryogenic detector ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,neutrinoless double beta decay ,Particle identification method ,double-beta decay: (0neutrino) ,Double beta decay ,CUPID ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Engineering (miscellaneous) ,scintillation counter ,Scintillation ,molybdenum: nuclide ,010308 nuclear & particles physics ,bibliography ,crystal: geometry ,Computational physics ,efficiency ,FIS/04 - FISICA NUCLEARE E SUBNUCLEARE ,Energy (signal processing) - Abstract
The CUPID Collaboration is designing a tonne-scale, background-free detector to search for double beta decay with sufficient sensitivity to fully explore the parameter space corresponding to the inverted neutrino mass hierarchy scenario. One of the CUPID demonstrators, CUPID-Mo, has proved the potential of enriched Li$$_{2}$$ 2 $$^{100}$$ 100 MoO$$_4$$ 4 crystals as suitable detectors for neutrinoless double beta decay search. In this work, we characterised cubic crystals that, compared to the cylindrical crystals used by CUPID-Mo, are more appealing for the construction of tightly packed arrays. We measured an average energy resolution of ($$6.7\pm 0.6$$ 6.7 ± 0.6 ) keV FWHM in the region of interest, approaching the CUPID target of 5 keV FWHM. We assessed the identification of $$\alpha $$ α particles with and without a reflecting foil that enhances the scintillation light collection efficiency, proving that the baseline design of CUPID already ensures a complete suppression of this $$\alpha $$ α -induced background contribution. We also used the collected data to validate a Monte Carlo simulation modelling the light collection efficiency, which will enable further optimisations of the detector.
- Published
- 2021
- Full Text
- View/download PDF
9. Final results of CALDER: kinetic inductance light detectors to search for rare events
- Author
-
N. Casali, I. Colantoni, Giorgio Pettinari, Angelo Cruciani, V. Pettinacci, S. Di Domizio, Laura Cardani, M. I. Martínez, and M. Vignati
- Subjects
Physics - Instrumentation and Detectors ,Kinetic Inductance Detectors ,Double Beta decay ,Majorana neutrino ,Physics and Astronomy (miscellaneous) ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Substrate (electronics) ,QC770-798 ,Astrophysics ,7. Clean energy ,01 natural sciences ,Multiplexing ,Kinetic inductance ,law.invention ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,law ,Double beta decay ,Nuclear and particle physics. Atomic energy. Radioactivity ,0103 physical sciences ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Engineering (miscellaneous) ,Nuclear Experiment ,Physics ,010308 nuclear & particles physics ,Detector ,Bolometer ,Response time ,Instrumentation and Detectors (physics.ins-det) ,QB460-466 ,High Energy Physics::Experiment ,Energy (signal processing) - Abstract
The next generation of bolometric experiments searching for rave events, in particular for the neutrino-less double beta decay, needs fast, high-sensitivity and easy-to-scale cryogenic light detectors. The CALDER project (2014-2020) developed a new technology for light detection at cryogenic temperature. In this paper we describe the achievements and the final prototype of this project, consisting of a $5\times5$ cm$^2$, 650 $\mu$m thick silicon substrate coupled to a single kinetic inductance detector made of a three-layer aluminum-titanium-aluminum. The baseline energy resolution is 34$\pm$1(stat)$\pm$2(syst) eV RMS and the response time is 120 $\mu$s. These features, along with the natural multiplexing capability of kinetic inductance detectors, meet the requirements of future large-scale experiments., Comment: 7 pages, 7 figures
- Published
- 2021
10. Novel technique for the study of pileup events in cryogenic bolometers
- Author
-
Valentyn Novosad, Andrea Giachero, R. Nipoti, Jie Zhang, H. Z. Huang, V. G. Yefremenko, G. Keppel, D. Mayer, C. Nones, A. Puiu, S. Nisi, A. Armatol, K. Wilson, I. Colantoni, A. Barresi, P. Loaiza, C. Oriol, G. Pessina, V. Sanglard, L. Imbert, M. Faverzani, M. Beretta, S. Copello, C. Pagliarone, F.A. Danevich, A. Branca, Jonathan Ouellet, T. O'Donnell, Paolo Carniti, Massimiliano Clemenza, G. Bari, S. Di Domizio, Kai Vetter, C. Rosenfeld, D. L. Helis, Monica Sisti, Federico Ferri, H. Khalife, V. Boldrini, P. Gorla, P. Pari, F. Ferroni, Tomas Polakovic, B. Schmidt, Stefano Dell'Oro, A. Charrier, J. Billard, C. Tomei, S. H. Fu, N. Casali, Laura Cardani, G. Wang, Jie Yang, B. K. Fujikawa, R. J. Creswick, Davide Chiesa, P. Gras, M. Chapellier, C. Pira, Joseph A. Formaggio, L. Pagnanini, P. T. Surukuchi, C. Brofferio, L. Wang, Massimiliano Nastasi, Stefano Pozzi, E. Figueroa-Feliciano, Haiping Peng, V. Shlegel, V. Sharma, E. V. Hansen, A. S. Barabash, B. Paul, M. Gros, Evelyn Ferri, Oliviero Cremonesi, S. Zucchelli, James Nikkel, Ezio Previtali, J. Gascon, R. Mariam, C. C. Chang, L. Ma, Yu. G. Kolomensky, Luigi Cappelli, L. Taffarello, B. Welliver, A. Giuliani, M. Madhukuttan, Matias Velázquez, C. Augier, S. Marnieros, V. Yumatov, Goran Karapetrov, G. Fantini, A. Cazes, Danielle Speller, James R. Wilson, A. Cruciani, X. F. Navick, S. Pirro, V. V. Kobychev, J. Camilleri, A. Franceschi, Changbo Fu, C. Rusconi, J. A. Scarpaci, A. Juillard, L. Bergé, R. Rizzoli, M. M. Zarytskyy, V. Dompè, G. D'Imperio, Irene Nutini, A. D'Addabbo, P. de Marcillac, M. De Jesus, O. G. Polischuk, F. Bellini, A. Ressa, D. Baudin, M. Xue, M. Pavan, Lindley Winslow, A. Drobizhev, I. Dafinei, S. L. Wagaarachchi, F. Collamati, V. Pettinacci, Simone Capelli, E. Olivieri, S. I. Konovalov, Eric B. Norman, L. Pattavina, M. I. Martínez, T. Napolitano, L. Marini, V.I. Tretyak, D. Misiak, D. V. Poda, J. Johnston, M. Biassoni, E. Armengaud, Vasundhara Singh, S. Milana, O. Azzolini, L. Gironi, F. T. Avignone, Whitney Armstrong, Y. Liu, C. Bucci, T. D. Gutierrez, R. G. Huang, F. Mancarella, L. Yan, S. Pagan, B. Mauri, M. de Combarieu, E. Celi, C. Gotti, A. S. Zolotarova, Ke Han, Reina H. Maruyama, A. Tsymbaliuk, Y. Mei, K. M. Heeger, O. Tellier, L. Dumoulin, Giovanni Benato, Armatol A., Armengaud E., Armstrong W., Augier C., Avignone F.T., Azzolini O., Barabash A., Bari G., Barresi A., Baudin D., Bellini F., Benato G., Beretta M., Berge L., Biassoni M., Billard J., Boldrini V., Branca A., Brofferio C., Bucci C., Camilleri J., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Cazes A., Celi E., Chang C., Chapellier M., Charrier A., Chiesa D., Clemenza M., Colantoni I., Collamati F., Copello S., Cremonesi O., Creswick R.J., Cruciani A., D'Addabbo A., D'Imperio G., Dafinei I., Danevich F.A., De Combarieu M., De Jesus M., De Marcillac P., Dell'Oro S., Di Domizio S., Dompe V., Drobizhev A., Dumoulin L., Fantini G., Faverzani M., Ferri E., Ferri F., Ferroni F., Figueroa-Feliciano E., Formaggio J., Franceschi A., Fu C., Fu S., Fujikawa B.K., Gascon J., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gras P., Gros M., Gutierrez T.D., Han K., Hansen E.V., Heeger K.M., Helis D.L., Huang H.Z., Huang R.G., Imbert L., Johnston J., Juillard A., Karapetrov G., Keppel G., Khalife H., Kobychev V.V., Kolomensky Y.G., Konovalov S., Liu Y., Loaiza P., Ma L., Madhukuttan M., Mancarella F., Mariam R., Marini L., Marnieros S., Martinez M., Maruyama R.H., Mauri B., Mayer D., Mei Y., Milana S., Misiak D., Napolitano T., Nastasi M., Navick X.F., Nikkel J., Nipoti R., Nisi S., Nones C., Norman E.B., Novosad V., Nutini I., O'Donnell T., Olivieri E., Oriol C., Ouellet J.L., Pagan S., Pagliarone C., Pagnanini L., Pari P., Pattavina L., Paul B., Pavan M., Peng H., Pessina G., Pettinacci V., Pira C., Pirro S., Poda D.V., Polakovic T., Polischuk O.G., Pozzi S., Previtali E., Puiu A., Ressa A., Rizzoli R., Rosenfeld C., Rusconi C., Sanglard V., Scarpaci J., Schmidt B., Sharma V., Shlegel V., Singh V., Sisti M., Speller D., Surukuchi P.T., Taffarello L., Tellier O., Tomei C., Tretyak V.I., Tsymbaliuk A., Velazquez M., Vetter K.J., Wagaarachchi S.L., Wang G., Wang L., Welliver B., Wilson J., Wilson K., Winslow L.A., Xue M., Yan L., Yang J., Yefremenko V., Yumatov V., Zarytskyy M.M., Zhang J., Zolotarova A., Zucchelli S., Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Rayonnement Matière de Saclay (IRAMIS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), CUPID, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Armatol, A, Armengaud, E, Armstrong, W, Augier, C, Avignone, F, Azzolini, O, Barabash, A, Bari, G, Barresi, A, Baudin, D, Bellini, F, Benato, G, Beretta, M, Berge, L, Biassoni, M, Billard, J, Boldrini, V, Branca, A, Brofferio, C, Bucci, C, Camilleri, J, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cazes, A, Celi, E, Chang, C, Chapellier, M, Charrier, A, Chiesa, D, Clemenza, M, Colantoni, I, Collamati, F, Copello, S, Cremonesi, O, Creswick, R, Cruciani, A, D'Addabbo, A, D'Imperio, G, Dafinei, I, Danevich, F, De Combarieu, M, De Jesus, M, De Marcillac, P, Dell'Oro, S, Di Domizio, S, Dompe, V, Drobizhev, A, Dumoulin, L, Fantini, G, Faverzani, M, Ferri, E, Ferri, F, Ferroni, F, Figueroa-Feliciano, E, Formaggio, J, Franceschi, A, Fu, C, Fu, S, Fujikawa, B, Gascon, J, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gras, P, Gros, M, Gutierrez, T, Han, K, Hansen, E, Heeger, K, Helis, D, Huang, H, Huang, R, Imbert, L, Johnston, J, Juillard, A, Karapetrov, G, Keppel, G, Khalife, H, Kobychev, V, Kolomensky, Y, Konovalov, S, Liu, Y, Loaiza, P, Ma, L, Madhukuttan, M, Mancarella, F, Mariam, R, Marini, L, Marnieros, S, Martinez, M, Maruyama, R, Mauri, B, Mayer, D, Mei, Y, Milana, S, Misiak, D, Napolitano, T, Nastasi, M, Navick, X, Nikkel, J, Nipoti, R, Nisi, S, Nones, C, Norman, E, Novosad, V, Nutini, I, O'Donnell, T, Olivieri, E, Oriol, C, Ouellet, J, Pagan, S, Pagliarone, C, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Poda, D, Polakovic, T, Polischuk, O, Pozzi, S, Previtali, E, Puiu, A, Ressa, A, Rizzoli, R, Rosenfeld, C, Rusconi, C, Sanglard, V, Scarpaci, J, Schmidt, B, Sharma, V, Shlegel, V, Singh, V, Sisti, M, Speller, D, Surukuchi, P, Taffarello, L, Tellier, O, Tomei, C, Tretyak, V, Tsymbaliuk, A, Velazquez, M, Vetter, K, Wagaarachchi, S, Wang, G, Wang, L, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Xue, M, Yan, L, Yang, J, Yefremenko, V, Yumatov, V, Zarytskyy, M, Zhang, J, Zolotarova, A, and Zucchelli, S
- Subjects
data analysis method ,double beta decay, nuclear tests of fundamental interactions, Particle decays ,Physics - Instrumentation and Detectors ,double beta decay ,FOS: Physical sciences ,Cryogenics ,MESH: numerical calculation ,01 natural sciences ,law.invention ,benchmark ,bolometer ,double-beta decay: (0neutrino) ,law ,Double beta decay ,0103 physical sciences ,Electronic engineering ,MESH: benchmark ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,numerical calculations ,010306 general physics ,time resolution ,nuclear tests of fundamental interactions ,Physics ,Signal generator ,010308 nuclear & particles physics ,Bolometer ,Detector ,Time resolution ,MESH: data analysis method ,Instrumentation and Detectors (physics.ins-det) ,MESH: bolometer ,Gran Sasso ,Neutrinoless Double Beta decay, Neutrino Physics ,MESH: cryogenics ,efficiency ,cryogenics ,pile-up ,Rise time ,MESH: Gran Sasso ,Benchmark (computing) ,MESH: double-beta decay: (0neutrino) ,Neutrinoless double-beta decay ,MESH: efficiency ,Particle decays ,MESH: time resolution ,MESH: pile-up - Abstract
International audience; Precise characterization of detector time resolution is of crucial importance for next-generation cryogenic-bolometer experiments searching for neutrinoless double-beta decay, such as CUPID, in order to reject background due to pile-up of two-neutrino double-beta decay events. In this paper, we describe a technique developed to study the pile-up rejection capability of cryogenic bolometers. Our approach, which consists of producing controlled pile-up events with a programmable waveform generator, has the benefit that we can reliably and reproducibly control the time separation and relative energy of the individual components of the generated pile-up events. The resulting data allow us to optimize and benchmark analysis strategies to discriminate between individual and pile-up pulses. We describe a test of this technique performed with a small array of detectors at the Laboratori Nazionali del Gran Sasso, in Italy; we obtain a 90% rejection efficiency against pulser-generated pile-up events with rise time of ~15 ms down to time separation between the individual events of 2 ms.
- Published
- 2021
- Full Text
- View/download PDF
11. A CUPID Li$_2$ $^{100} $MoO$_4$ scintillating bolometer tested in the CROSS underground facility
- Author
-
A. S. Barabash, V. Yumatov, G. D'Imperio, M. De Deo, Ezio Previtali, J. M. Calvo-Mozota, Evelyn Ferri, B. Welliver, L. Gironi, L. Marini, E. Guerard, D. Misiak, D. V. Poda, J. Johnston, V. Dompè, F. T. Avignone, Whitney Armstrong, A. Charrier, O. Tellier, I. Colantoni, A. D'Addabbo, S. Di Domizio, P. Pari, Tomas Polakovic, Massimiliano Clemenza, V. Shlegel, R. Mariam, Yu. G. Kolomensky, Luigi Cappelli, Monica Sisti, M. Pavan, S. Zucchelli, Laura Cardani, P. de Marcillac, C. Augier, Goran Karapetrov, X.-F. Navick, B. K. Fujikawa, Stefano Pozzi, L. Pagnanini, P. T. Surukuchi, O. Azzolini, G. Fantini, Federico Ferri, B. Schmidt, C. Oriol, C. Pagliarone, E. Celi, T. O'Donnell, S. H. Fu, S. Dell'Oro, Giovanni Benato, M. Xue, Yuting Liu, Ch. Bourgeois, C. C. Chang, Stefano Nisi, James R. Wilson, S. Milana, G. Olivier, A. Cruciani, A. Franceschi, Changbo Fu, I. Dafinei, M. Chapellier, C. Gotti, S. Copello, C. Brofferio, S. Pirro, Jie Yang, V. Sharma, D. L. Helis, A. Barresi, J. Camilleri, R. Rizzoli, L. Ma, L. Dumoulin, Davide Chiesa, A. S. Zolotarova, Paolo Carniti, V. Pettinacci, A. Juillard, A. Candela, M. Gros, M. Madhukuttan, I. C. Bandac, M. De Jesus, E. V. Hansen, O. G. Polischuk, A. Drobizhev, Ke Han, F. Bellini, A. Ressa, Reina H. Maruyama, V.I. Tretyak, F.A. Danevich, J. A. Scarpaci, C. Bucci, T. D. Gutierrez, M. Faverzani, Matias Velázquez, P. Loaiza, Kai Vetter, Massimiliano Nastasi, S. I. Konovalov, L. Taffarello, D. Reynet, V. V. Kobychev, L. Bergé, J. Gascon, V. Sanglard, L. Yan, L. Imbert, Virendra Singh, M. M. Zarytskyy, Valentyn Novosad, C. Rosenfeld, Danielle Speller, Andrea Giachero, N. Casali, A. Branca, L. Pattavina, A. Ianni, E. Olivieri, R. J. Creswick, Eric B. Norman, V. Boldrini, P. Gras, K. Wilson, S. Pagan, J. Billard, S. Marnieros, Li Wang, T. Napolitano, R. Nipoti, A. Cazes, P. Gorla, F. Ferroni, E. Figueroa-Feliciano, C. Tomei, C. Pira, Haiping Peng, Oliviero Cremonesi, M. Biassoni, D. Mayer, Jonathan Ouellet, G. Bari, Lindley Winslow, M. de Combarieu, Joseph A. Formaggio, A. Tsymbaliuk, Y. Mei, A. Armatol, K. M. Heeger, R. G. Huang, F. Mancarella, B. Paul, M. I. Martínez, G. Pessina, Jie Zhang, C. Nones, A. Puiu, A. Giuliani, B. Mauri, James Nikkel, Irene Nutini, G. Wang, H. Z. Huang, V. G. Yefremenko, G. Keppel, H. Khalife, E. Armengaud, D. Baudin, M. Beretta, S. L. Wagaarachchi, F. Collamati, Simone Capelli, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Rayonnement Matière de Saclay (IRAMIS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), CUPID, CROSS, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Armatol A., Armengaud E., Armstrong W., Augier C., Iii F.T.A., Azzolini O., Bandac I.C., Barabash A.S., Bari G., Barresi A., Baudin D., Bellini F., Benato G., Beretta M., Berge L., Bourgeois C., Biassoni M., Billard J., Boldrini V., Branca A., Brofferio C., Bucci C., Calvo-Mozota J.M., Camilleri J., Candela A., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Cazes A., Celi E., Chang C., Chapellier M., Charrier A., Chiesa D., Clemenza M., Colantoni I., Collamati F., Copello S., Cremonesi O., Creswick R.J., Cruciani A., D'Addabbo A., D'Imperio G., Dafinei I., Danevich F.A., De Combarieu M., Deo M.D., Jesus M.D., De Marcillac P., Dell'Oro S., Domizio S.D., Dompe V., Drobizhev A., Dumoulin L., Fantini G., Faverzani M., Ferri E., Ferri F., Ferroni F., Figueroa-Feliciano E., Formaggio J., Franceschi A., Fu C., Fu S., Fujikawa B.K., Gascon J., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gras P., Gros M., Guerard E., Gutierrez T.D., Han K., Hansen E.V., Heeger K.M., Helis D.L., Huang H.Z., Huang R.G., Ianni A., Imbert L., Johnston J., Juillard A., Karapetrov G., Keppel G., Khalife H., Kobychev V.V., Kolomensky Y.G., Konovalov S.I., Liu Y., Loaiza P., Ma L., Madhukuttan M., Mancarella F., Mariam R., Marini L., Marnieros S., Martinez M., Maruyama R.H., Mauri B., Mayer D., Mei Y., Milana S., Misiak D., Napolitano T., Nastasi M., Navick X.-F., Nikkel J., Nipoti R., Nisi S., Nones C., Norman E.B., Novosad V., Nutini I., O'Donnell T., Olivier G., Olivieri E., Oriol C., Ouellet J.L., Pagan S., Pagliarone C., Pagnanini L., Pari P., Pattavina L., Paul B., Pavan M., Peng H., Pessina G., Pettinacci V., Pira C., Pirro S., Poda D.V., Polakovic T., Polischuk O.G., Pozzi S., Previtali E., Puiu A., Ressa A., Reynet D., Rizzoli R., Rosenfeld C., Sanglard V., Scarpaci J.A., Schmidt B., Sharma V., Shlegel V.N., Singh V., Sisti M., Speller D., Surukuchi P.T., Taffarello L., Tellier O., Tomei C., Tretyak V.I., Tsymbaliuk A., Velazquez M., Vetter K.J., Wagaarachchi S.L., Wang G., Wang L., Welliver B., Wilson J., Wilson K., Winslow L.A., Xue M., Yan L., Yang J., Yefremenko V., Yumatov V.I., Zarytskyy M.M., Zhang J., Zolotarova A.S., Zucchelli S., Armatol, A, Armengaud, E, Armstrong, W, Augier, C, Avignone F. T., I, Azzolini, O, Bandac, I, Barabash, A, Bari, G, Barresi, A, Baudin, D, Bellini, F, Benato, G, Beretta, M, Berge, L, Bourgeois, C, Biassoni, M, Billard, J, Boldrini, V, Branca, A, Brofferio, C, Bucci, C, Calvo-Mozota, J, Camilleri, J, Candela, A, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cazes, A, Celi, E, Chang, C, Chapellier, M, Charrier, A, Chiesa, D, Clemenza, M, Colantoni, I, Collamati, F, Copello, S, Cremonesi, O, Creswick, R, Cruciani, A, D'Addabbo, A, D'Imperio, G, Dafinei, I, Danevich, F, De Combarieu, M, Deo, M, Jesus, M, De Marcillac, P, Dell'Oro, S, Domizio, S, Dompe, V, Drobizhev, A, Dumoulin, L, Fantini, G, Faverzani, M, Ferri, E, Ferri, F, Ferroni, F, Figueroa-Feliciano, E, Formaggio, J, Franceschi, A, Fu, C, Fu, S, Fujikawa, B, Gascon, J, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gras, P, Gros, M, Guerard, E, Gutierrez, T, Han, K, Hansen, E, Heeger, K, Helis, D, Huang, H, Huang, R, Ianni, A, Imbert, L, Johnston, J, Juillard, A, Karapetrov, G, Keppel, G, Khalife, H, Kobychev, V, Kolomensky, Y, Konovalov, S, Liu, Y, Loaiza, P, Ma, L, Madhukuttan, M, Mancarella, F, Mariam, R, Marini, L, Marnieros, S, Martinez, M, Maruyama, R, Mauri, B, Mayer, D, Mei, Y, Milana, S, Misiak, D, Napolitano, T, Nastasi, M, Navick, X, Nikkel, J, Nipoti, R, Nisi, S, Nones, C, Norman, E, Novosad, V, Nutini, I, O'Donnell, T, Olivier, G, Olivieri, E, Oriol, C, Ouellet, J, Pagan, S, Pagliarone, C, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Poda, D, Polakovic, T, Polischuk, O, Pozzi, S, Previtali, E, Puiu, A, Ressa, A, Reynet, D, Rizzoli, R, Rosenfeld, C, Sanglard, V, Scarpaci, J, Schmidt, B, Sharma, V, Shlegel, V, Singh, V, Sisti, M, Speller, D, Surukuchi, P, Taffarello, L, Tellier, O, Tomei, C, Tretyak, V, Tsymbaliuk, A, Velazquez, M, Vetter, K, Wagaarachchi, S, Wang, G, Wang, L, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Xue, M, Yan, L, Yang, J, Yefremenko, V, Yumatov, V, Zarytskyy, M, Zhang, J, Zolotarova, A, and Zucchelli, S
- Subjects
gas and liquid scintillators) ,Physics - Instrumentation and Detectors ,Accurate estimation ,Physics::Instrumentation and Detectors ,Bolometer ,Analytical chemistry ,Double-beta decay ,FOS: Physical sciences ,Cryogenic detector ,Radiopurity ,01 natural sciences ,030218 nuclear medicine & medical imaging ,law.invention ,Particle identification ,Particle identification methods ,03 medical and health sciences ,Particle identification method ,0302 clinical medicine ,CUORE ,law ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detector array ,Instrumentation ,Mathematical Physics ,Event triggered ,Physics ,Lithium molybdate ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ,Double-beta decay detectors ,scintillation and light emission processes (solid ,Double-beta decay detector ,Cryogenic detectors ,Scintillators ,Crystal scintillator ,Energy (signal processing) - Abstract
A scintillating bolometer based on a large cubic Li$_{2}$$^{100}$MoO$_4$ crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation $0\nu2\beta$ experiment CUPID. The measurements were performed at 18 and 12 mK temperature in a pulse tube dilution refrigerator. This setup utilizes the same technology as the CUORE cryostat that will host CUPID and so represents an accurate estimation of the expected performance. The Li$_{2}$$^{100}$MoO$_4$ bolometer shows a high energy resolution of 6 keV FWHM at the 2615 keV $\gamma$ line. The detection of scintillation light for each event triggered by the Li$_{2}$$^{100}$MoO$_4$ bolometer allowed for a full separation ($\sim$8$\sigma$) between $\gamma$($\beta$) and $\alpha$ events above 2 MeV. The Li$_{2}$$^{100}$MoO$_4$ crystal also shows a high internal radiopurity with $^{228}$Th and $^{226}$Ra activities of less than 3 and 8 $\mu$Bq/kg, respectively. Taking also into account the advantage of a more compact and massive detector array, which can be made of cubic-shaped crystals (compared to the cylindrical ones), this test demonstrates the great potential of cubic Li$_{2}$$^{100}$MoO$_4$ scintillating bolometers for high-sensitivity searches for the $^{100}$Mo $0\nu2\beta$ decay in CROSS and CUPID projects., Comment: 19 pages, 7 figures, 1 table
- Published
- 2021
- Full Text
- View/download PDF
12. Pulse Shape Discrimination in CUPID-Mo using Principal Component Analysis
- Author
-
L. Pattavina, F.A. Danevich, Vasundhara Singh, B. Schmidt, L. Marini, A. S. Barabash, Ezio Previtali, B. Welliver, K. Schäffner, P. de Marcillac, J. Johnston, V.I. Umatov, Jonathan Ouellet, Ph. Camus, D. Misiak, E. Yakushev, K. Eitel, H. Khalife, S. V. Rozov, C. Rusconi, P. Pari, Laura Cardani, S. Pirro, B. K. Fujikawa, V.D. Grigorieva, V.V. Kobychev, F. Charlieux, B. Siebenborn, I. Dafinei, V. I. Tretyak, M. De Jesus, A. Juillard, Yu. A. Borovlev, Matias Velázquez, Federico Ferri, Alexandre Benoit, D.V. Poda, M. Beretta, L. Vagneron, P. Loaiza, M. de Combarieu, J. A. Scarpaci, L. Bergé, E. P. Makarov, R. Mariam, V.N. Shlegel, Yu. G. Kolomensky, E. Armengaud, Th. Redon, M. Kleifges, C. Tomei, J. Billard, D. L. Helis, C. Augier, O. G. Polischuk, M. M. Zarytskyy, E. Guerard, L. Ma, L. Dumoulin, A. S. Zolotarova, Marc Weber, F. Bellini, B. Paul, T. Dixon, Lindley Winslow, H. Z. Huang, A. Giuliani, M. Pavan, R. Huang, X-F. Navick, Giovanni Benato, L. Pagnanini, E. Olivieri, Eric B. Norman, G. Pessina, C. Nones, V. B. Brudanin, A. Cazes, V. Sanglard, L. Gironi, M. Xue, J. Gascon, N. Casali, S. Marnieros, Haiping Peng, Y. Shen, S. I. Konovalov, M. Gros, Ch. Bourgeois, M. Chapellier, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Rayonnement Matière de Saclay (IRAMIS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), CUPID, Space Sciences Laboratory, University of California, Berkeley, CA94720-7450, USA (SSL), Space Sciences Laboratory, University of California, Berkeley, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Cryogénie (NEEL - Cryo)
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,principal component analysis ,shape analysis ,nucl-ex ,01 natural sciences ,Signal ,030218 nuclear medicine & medical imaging ,law.invention ,helium: background ,physics.data-an ,0302 clinical medicine ,Engineering ,law ,Nuclear Experiment (nucl-ex) ,Instrumentation ,Nuclear Experiment ,physics.ins-det ,Mathematical Physics ,ComputingMilieux_MISCELLANEOUS ,background: suppression ,Analysis and statistical methods ,calorimeters ,data processing methods ,double-beta decay detectors ,Physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,molybdenum: oxygen ,lithium ,Principal component analysis ,Data processing methods ,Physical Sciences ,[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis, Statistics and Probability [physics.data-an] ,Shape analysis (digital geometry) ,data analysis method ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,03 medical and health sciences ,Calorimeters ,Optics ,double-beta decay: (0neutrino) ,bolometer ,0103 physical sciences ,Calibration ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,molybdenum: nuclide ,010308 nuclear & particles physics ,business.industry ,Bolometer ,Filter (signal processing) ,Double-beta decay detectors ,calibration ,Pulse (physics) ,pile-up ,Physics - Data Analysis, Statistics and Probability ,scintillation counter: crystal ,High Energy Physics::Experiment ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Data Analysis, Statistics and Probability (physics.data-an) - Abstract
CUPID-Mo is a cryogenic detector array designed to search for neutrinoless double-beta decay (0νββ) of 100Mo. It uses 20 scintillating 100Mo-enriched Li2MoO4 bolometers instrumented with Ge light detectors to perform active suppression of α backgrounds, drastically reducing the expected background in the 0νββ signal region. As a result, pileup events and small detector instabilities that mimic normal signals become non-negligible potential backgrounds. These types of events can in principle be eliminated based on their signal shapes, which are different from those of regular bolometric pulses. We show that a purely data-driven principal component analysis based approach is able to filter out these anomalous events, without the aid of detector response simulations.
- Published
- 2021
- Full Text
- View/download PDF
13. Search for neutrinoless double beta decay of $$^{64}$$Zn and $$^{70}$$Zn with CUPID-0
- Author
-
P. Gorla, F. Ferroni, C. Tomei, Massimiliano Clemenza, L. Pattavina, L. Pagnanini, M. Beretta, S. Di Domizio, K. Schäffner, Claudio Gotti, Stefano Nisi, Paolo Carniti, Laura Cardani, Oliviero Cremonesi, Massimiliano Nastasi, Stefano Pozzi, C. Brofferio, A. S. Zolotarova, S. Pirro, M. Vignati, C. Rusconi, A. D'Addabbo, N. Casali, Angelo Cruciani, Ezio Previtali, Simone Capelli, G. Keppel, Davide Chiesa, Jeffrey W. Beeman, Marco Pallavicini, D. Orlandi, G. Pessina, E. Celi, A. Giuliani, C. Nones, A. Puiu, V. Pettinacci, M. Pavan, I. Dafinei, O. Azzolini, L. Gironi, F. Bellini, M. Biassoni, S.S. Nagorny, C. Bucci, Miriam Lucio Martinez, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Azzolini, O, Beeman, J, Bellini, F, Beretta, M, Biassoni, M, Brofferio, C, Bucci, C, Capelli, S, Cardani, L, Celi, E, Carniti, P, Casali, N, Chiesa, D, Clemenza, M, Cremonesi, O, Cruciani, A, D'Addabbo, A, Dafinei, I, Domizio, S, Ferroni, F, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Keppel, G, Martinez, M, Nagorny, S, Nastasi, M, Nisi, S, Nones, C, Orlandi, D, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rusconi, C, Schaffner, K, Tomei, C, Vignati, M, and Zolotarova, A
- Subjects
neutrinoless double beta decay, scintillating bolometers ,Particle physics ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,Electron capture ,FOS: Physical sciences ,electron: capture ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,isotope enrichment ,bolometer ,double-beta decay: (0neutrino) ,Double beta decay ,0103 physical sciences ,Beta (velocity) ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Engineering (miscellaneous) ,scintilla- tion detector ,Physics ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Gran Sasso ,zinc: selenium ,calorimeter: cryogenics ,cryogenic calorimeter ,scintillation counter: crystal ,selenium: nuclide ,bolometers ,experimental results - Abstract
CUPID-0 is the first pilot experiment of CUPID, a next-generation project searching for neutrinoless double beta decay. In its first scientific run, CUPID-0 operated 26 ZnSe cryogenic calorimeters coupled to light detectors in the underground Laboratori Nazionali del Gran Sasso. In this work, we analyzed a ZnSe exposure of 11.34 kg year to search for the neutrinoless double beta decay of $$^{70}$$70Zn and for the neutrinoless positron-emitting electron capture of $$^{64}$$64Zn. We found no evidence for these decays and set 90$$\%$$% credible interval limits of $$\hbox {T}_{1/2}^{0\nu \beta \beta }$$T1/20νββ($$^{70}$$70Zn) > 1.6 $$10^{21}$$1021 year and $$\hbox {T}_{1/2}^{0\nu EC \beta +}$$T1/20νECβ+($$^{64}$$64Zn) > 1.2$$\times 10^{22}$$×1022 year, surpassing by more than one order of magnitude the previous experimental results (Belli et al. in J Phys G 38(11):115107, https://doi.org/10.1088/0954-3899/38/11/115107, 2011).
- Published
- 2020
- Full Text
- View/download PDF
14. Improved Limit on Neutrinoless Double-Beta Decay in Te130 with CUORE
- Author
-
Yudi Ma, Massimiliano Clemenza, C. Pagliarone, Carlo Cosmelli, B. S. Wang, Silvia Capelli, Massimiliano Nastasi, S. Pirro, N. Chott, C. Brofferio, C. Rosenfeld, V. Novati, Davide Chiesa, A. Caminata, L. Ma, V. Dompè, Ezio Previtali, Marco Pallavicini, A. D'Addabbo, P. Gorla, F. Ferroni, C. Tomei, James R. Wilson, B. Welliver, K. Wilson, Emanuele Ferri, Carlo Ligi, A. Campani, R. G. Huang, I. Nutini, D. Q. Adams, I. Dafinei, M. Sakai, Jonathan Ouellet, G. Bari, K. Alfonso, Giovanni Benato, N. D. Scielzo, C. Nones, E. Fiorini, C. Bucci, Lucia Canonica, S. Di Domizio, A. Puiu, T. D. Gutierrez, C. Rusconi, M. Faverzani, Deqing Fang, C. J. Davis, Laura Cardani, B. K. Fujikawa, L. Zanotti, F. Bellini, S. Morganti, Stefano Dell'Oro, A. Branca, L. Marini, M. Vignati, S. L. Wagaarachchi, S. Pozzi, J. Johnston, L. Pattavina, A. Giachero, V. Sharma, R. J. Creswick, L. Cappelli, B. Schmidt, T. Napolitano, G. Pessina, N. Moggi, A. Giuliani, Stefano Zucchelli, O. Azzolini, M. Biassoni, V. Pettinacci, Samuele Sangiorgio, A. Nucciotti, M. Sisti, S. Copello, C. Alduino, G. Fantini, S. Zimmermann, D. D'Aguanno, L. Pagnanini, L. Gironi, F. T. Avignone, Paolo Carniti, M. A. Franceschi, Eric B. Norman, M. Pavan, J. Nikkel, P. T. Surukuchi, Lindley Winslow, T. O'Donnell, F. Terranova, H. Z. Huang, Y. Mei, Xiangyu Cao, G. Keppel, Oliviero Cremonesi, K. M. Heeger, Ke Han, Reina H. Maruyama, Stuart J. Freedman, N. Casali, Yu. G. Kolomensky, Claudio Gotti, C. Pira, L. Taffarello, Virendra Singh, and Danielle Speller
- Subjects
Physics ,Semileptonic decay ,Particle physics ,General Physics and Astronomy ,01 natural sciences ,Lower limit ,MAJORANA ,CUORE ,Double beta decay ,0103 physical sciences ,Limit (mathematics) ,Sensitivity (control systems) ,Neutrino ,010306 general physics - Abstract
We report new results from the search for neutrinoless double-beta decay in ^{130} Te with the CUORE detector. This search benefits from a fourfold increase in exposure, lower trigger thresholds, and analysis improvements relative to our previous results. We observe a background of (1.38±0.07)×10^{-2} counts/(keV kg yr)) in the 0νββ decay region of interest and, with a total exposure of 372.5 kg yr, we attain a median exclusion sensitivity of 1.7×10^{25} yr. We find no evidence for 0νββ decay and set a 90% credibility interval Bayesian lower limit of 3.2×10^{25} yr on the ^{130} Te half-life for this process. In the hypothesis that 0νββ decay is mediated by light Majorana neutrinos, this results in an upper limit on the effective Majorana mass of 75-350 meV, depending on the nuclear matrix elements used.
- Published
- 2020
- Full Text
- View/download PDF
15. Status of the CALDER project: Cryogenic light detectors for background suppression
- Author
-
J. Goupy, Carlo Cosmelli, Giorgio Pettinari, Marco Castellano, S. Di Domizio, Laura Cardani, H. le Sueur, Martino Calvo, M. Vignati, N. Casali, Miriam Lucio Martinez, Angelo Cruciani, F. Bellini, Alessandro Monfardini, P. Fresch, Institut Néel (NEEL), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Nuclear and High Energy Physics ,Silicon ,Physics::Instrumentation and Detectors ,Kinetic inductance detectors ,Phonon-mediated light detectors ,Rare events searches ,Superconducting device ,energy resolution ,chemistry.chemical_element ,02 engineering and technology ,Cryogenics ,01 natural sciences ,Particle identification ,law.invention ,Optics ,bolometer ,double-beta decay: (0neutrino) ,law ,Double beta decay ,0103 physical sciences ,titanium ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation ,detector: design ,Physics ,business.industry ,Bolometer ,Detector ,Resolution (electron density) ,silicon ,sensitivity ,021001 nanoscience & nanotechnology ,chemistry ,cryogenics ,aluminum ,photon: detector ,particle identification ,0210 nano-technology ,business ,Sensitivity (electronics) - Abstract
International audience; The development of large area cryogenic light detectors is one of the priorities of next generation bolometric experiments searching for neutrinoless double beta decay. The simultaneous read-out of the heat and light signals enables particle identification, provided that the energy resolution and the light collection are sufficiently high. CALDER (Cryogenic wide-Area Light Detectors with Excellent Resolution) is developing phonon-mediated silicon light detectors using KIDs, with the goal of sensing an area of 5 × 5 cm 2 with a resolution of 20 eV RMS. We present the latest results obtained with aluminum chips and with newly developed multi-layer titanium–aluminum chips featuring a remarkable sensitivity.
- Published
- 2019
- Full Text
- View/download PDF
16. Phonon-Mediated KIDs as Light Detectors for Rare Event Search: The CALDER Project
- Author
-
N. Casali, I. Colantoni, F. Bellini, Laura Cardani, M. Vignati, Sergio Di Domizio, A. D'Addabbo, C. Cosmelli, Angelo Cruciani, Claudia Tomei, Maria Gabriella Castellano, and M. I. Martínez
- Subjects
Photon ,Dark matter ,scintillating bolometer ,01 natural sciences ,Noise (electronics) ,dark matter ,neutrinoless double beta decay ,Particle identification ,law.invention ,Nuclear physics ,Kinetic inductance detector ,law ,Double beta decay ,0103 physical sciences ,Electronic ,Optical and Magnetic Materials ,Electrical and Electronic Engineering ,Electronic, Optical and Magnetic Materials ,Condensed Matter Physics ,010306 general physics ,010303 astronomy & astrophysics ,Physics ,business.industry ,Bolometer ,Detector ,Optoelectronics ,Particle physics experiments ,business - Abstract
Background suppression plays a crucial role in particle physics experiments searching for rare events, such as neutrinoless double beta decay and dark matter interactions. Bolometers, that are among the most competitive devices in this field, would largely benefit from the development of ultrasensitive light detectors, as the combined readout of the bolometric and light signals enables the particle identification. The CALDER collaboration is developing superconducting light detectors that will match the requirements of next generation experiments: noise lower than 20 eV, large active area (>20 cm 2 ), wide temperature range of operation, high radiopurity, and ease in fabricating hundreds of channels. For this purpose, we are exploiting the excellent energy resolution and the natural multiplexed readout provided by kinetic inductance detectors (KIDs). KIDs have already demonstrated their potentiality as direct detectors of photons for different astrophysical applications. The aim of our project is to apply this technology in particle physics, using indirect detection. These devices can be operated in a phonon-mediated approach, in which KIDs are coupled to a large insulating substrates in order to increase the active surface from a few mm2 to 25 cm 2 . We have already demonstrated the feasibility of a phonon-mediated KIDs-based light detectors, using aluminium sensors. These device reached a baseline sensitivity of around 80 eV with an overall efficiency of about 20%. Currently, we are testing new materials (e.g., Ti-Al and nonstoichiometric TiN) to enhance the sensitivity and reach the goal of our project. We present our results and the physical interpretation of the device behavior. Finally, we also discuss the impact of this project on the most advanced bolometric experiments searching for neutrinoless double beta decay and dark matter.
- Published
- 2017
- Full Text
- View/download PDF
17. Cryogenic Light Detectors for Background Suppression: The CALDER Project
- Author
-
N. Casali, Angelo Cruciani, I. Colantoni, Martino Calvo, M. I. Martínez, H. le Sueur, Alessandro Monfardini, Giorgio Pettinari, Carlo Cosmelli, S. Di Domizio, Laura Cardani, M. Vignati, C. Bellenghi, Johannes Goupy, G. Castellano, Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Istituto Nazionale di Fisica Nucleare [Sezione di Roma 1] (INFN), Istituto Nazionale di Fisica Nucleare, Cryogénie (NEEL - Cryo), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), CNR Istituto di Fotonica e Nanotecnologie [Trento] (IFN), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Hélium : du fondamental aux applications (NEEL - HELFA), and University of Zaragoza - Universidad de Zaragoza [Zaragoza]
- Subjects
Physics ,Light detector ,[PHYS]Physics [physics] ,010308 nuclear & particles physics ,Resonator ,Detector ,Cryogenic detector ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,Multiplexing ,Atomic and Molecular Physics, and Optics ,Particle identification ,Nuclear physics ,Phonon-mediated ,Observatory ,Double beta decay ,0103 physical sciences ,Background suppression ,General Materials Science ,010306 general physics ,Energy (signal processing) ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; The CALDER project aims to realize cryogenic light detectors for the next generation of experiments searching for rare events. More in detail, the main application of these devices will be the background suppression in future cryogenic calorimetric experiments searching for neutrinoless double beta decay ($0\nu $DBD). This is the case of CUPID, a next-generation $0\nu $DBD observatory, able to take advantage from particle identification to dramatically reduce the background events. In this contribution, we show the status of the CALDER project. The light sensors developed in this R&D are based on kinetic inductance detector operated in the phonon-mediated approach. Their energy resolution (20 eV), time response ($\upmu $s) and multiplexing capability make them very promising for the future CUPID experiment.
- Published
- 2020
- Full Text
- View/download PDF
18. Perspectives of lowering CUORE thresholds with Optimum Trigger
- Author
-
Monica Sisti, A. Bersani, C. Brofferio, G. Fantini, A. Caminata, Marco Pallavicini, B. Welliver, C. Pagliarone, R. G. Huang, M. Faverzani, Y. u. G. Kolomensky, H. Z. Huang, G. Keppel, Massimiliano Nastasi, Yudi Ma, S. Pozzi, S. L. Wagaarachchi, C. Cosmelli, A. Giuliani, C. Pira, C. Rusconi, Ke Han, A. Branca, N. D. Scielzo, Reina H. Maruyama, N. Casali, Stefano Dell'Oro, Lucia Canonica, F. Bellini, I. Dafinei, V. Novati, T. Wise, V. Pettinacci, Davide Chiesa, Stefano Zucchelli, Laura Cardani, L. Gironi, M. Pavan, B. K. Fujikawa, Y. Mei, V. Singh, D. D'Aguanno, F. T. Avignone, L. Taffarello, R. J. Creswick, C. Rosenfeld, P. Gorla, Danielle Speller, F. Ferroni, C. Tomei, M. Vignati, E. Previtali, Simone Capelli, D. Q. Adams, L. Marini, C. J. Davis, K. Alfonso, T. O'Donnell, B. Schmidt, N. Chott, C. Nones, A. Puiu, Lindley Winslow, S. Zimmermann, Oliviero Cremonesi, J. Johnston, L. Pattavina, Irene Nutini, S. Copello, C. Bucci, Miriam Lucio Martinez, Paolo Carniti, Sergio Di Domizio, S. Pirro, Xi-Guang Cao, E. Fiorini, S. J. Freedman, K. M. Heeger, Luigi Cappelli, T. D. Gutierrez, F. Terranova, K. Wilson, G. Pessina, B. S. Wang, Jonathan Ouellet, G. Bari, O. Azzolini, Evelyn Ferri, N. Moggi, Samuele Sangiorgio, A. Nucciotti, C. Alduino, Jeremy S. Cushman, S. Morganti, L. Zanotti, Carlo Ligi, A. Campani, V. Dompè, A. D'Addabbo, A. Leder, J. S. Wilson, Franceschi, Eric B. Norman, M. Sakai, T. Napolitano, M. Biassoni, Giovanni Benato, A. Drobizhev, C. Gotti, A. Giachero, D. Q. Fang, Massimiliano Clemenza, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
Physics ,History ,CUORE ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,WIMP nucleus: scattering ,trigger: programming ,01 natural sciences ,Large target ,tellurium: oxygen ,Computer Science Applications ,Education ,Combinatorics ,energy: threshold ,Low energy ,double-beta decay: (0neutrino) ,0103 physical sciences ,High Energy Physics::Experiment ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,activity report ,energy: low - Abstract
Author(s): Dompe, V; Adams, DQ; Alduino, C; Alfonso, K; Avignone, FT; Azzolini, O; Bari, G; Bellini, F; Benato, G; Bersani, A; Biassoni, M; Branca, A; Brofferio, C; Bucci, C; Caminata, A; Campani, A; Canonica, L; Cao, XG; Capelli, S; Cappelli, L; Cardani, L; Carniti, P; Casali, N; Chiesa, D; Chott, N; Clemenza, M; Copello, S; Cosmelli, C; Cremonesi, O; Creswick, RJ; Cushman, JS; D'Addabbo, A; D'Aguanno, D; Dafinei, I; Davis, CJ; Dell'Oro, S; Domizio, SD; Drobizhev, A; Fang, DQ; Fantini, G; Faverzani, M; Ferri, E; Ferroni, F; Fiorini, E; Franceschi, MA; Freedman, SJ; Fujikawa, BK; Giachero, A; Gironi, L; Giuliani, A; Gorla, P; Gotti, C; Gutierrez, TD; Han, K; Heeger, KM; Huang, RG; Huang, HZ; Johnston, J; Keppel, G; Kolomensky, YG; Leder, A; Ligi, C; Ma, YG; Marini, L; Martinez, M; Maruyama, RH; Mei, Y; Moggi, N; Morganti, S; Napolitano, T; Nastasi, M; Nones, C; Norman, EB; Novati, V; Nucciotti, A; Nutini, I; O'Donnell, T; Ouellet, JL; Pagliarone, CE; Pallavicini, M; Pattavina, L; Pavan, M; Pessina, G; Pettinacci, V; Pira, C | Abstract: CUORE is a cryogenic experiment that focuses on the search of neutrinoless double beta decay in 130Te and it is located at the Gran Sasso National Laboratories. Its detector consists of 988 TeO2 crystals operating at a base temperature of ∼10 mK. It is the first ton-scale bolometric experiment ever realized for this purpose. Thanks to its large target mass and ultra-low background, the CUORE detector is also suitable for the search of other rare phenomena. In particular the low energy part of the spectra is interesting for the detection of WIMP-nuclei scattering reactions. One of the most important requirements to perform these studies is represented by the achievement of a stable energy threshold lower than 10 keV. Here, the CUORE capability to accomplish this purpose using a low energy software trigger will be presented and described.
- Published
- 2020
- Full Text
- View/download PDF
19. DEMETRA: Suppression of the Relaxation Induced by Radioactivity in Superconducting Qubits
- Author
-
I. Colantoni, Laura Cardani, N. Casali, M. Vignati, Lukas Gruenhaupt, M. I. Martínez, L. Gironi, Wolfgang Wernsdorfer, Francesco Valenti, Fabio Henriques, Daria Gusenkova, Stefano Pirro, Marc Lagoin, C. Rusconi, Ioan Pop, M. Clemenza, Alexey V. Ustinov, Angelo Cruciani, Gianluigi Catelani, Thibault Charpentier, Cardani, L, Casali, N, Catelani, G, Charpentier, T, Clemenza, M, Colantoni, I, Cruciani, A, Gironi, L, Gruenhaupt, L, Gusenkova, D, Henriques, F, Lagoin, M, Martinez, M, Pirro, S, Pop, I, Rusconi, C, Ustinov, A, Valenti, F, Vignati, M, and Wernsdorfer, W
- Subjects
Kinetic inductance detectors ,Quantum bits ,Radioactivity ,Phonon ,Cosmic ray ,01 natural sciences ,010305 fluids & plasmas ,Kinetic inductance detector ,Condensed Matter::Superconductivity ,0103 physical sciences ,General Materials Science ,ddc:530 ,010306 general physics ,Computer Science::Databases ,Physics ,Superconductivity ,Condensed matter physics ,Quantum bit ,Condensed Matter Physics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Atomic and Molecular Physics, and Optics ,Qubit ,Quasiparticle ,Condensed Matter::Strongly Correlated Electrons ,Cooper pair ,Coherence (physics) - Abstract
Non-equilibrium quasiparticles can deteriorate the performance of superconducting qubits by reducing their coherence. We are investigating a source of quasiparticles that has been too long neglected, namely radioactivity: cosmic rays, environmental radioactivity and contaminants in the materials can all generate phonons of energy sufficient to break Cooper pairs and thus increase the number of quasiparticles. In this contribution, we describe the status of the project and its perspectives.
- Published
- 2020
- Full Text
- View/download PDF
20. BULLKID: BULky and Low-Threshold Kinetic Inductance Detectors
- Author
-
V. Pettinacci, I. Colantoni, Alessandro Monfardini, A. Mazzolari, S. Di Domizio, Riccardo Camattari, Laura Cardani, Vincenzo Guidi, Martino Calvo, M. Vignati, J. Goupy, N. Casali, M. I. Martínez, H. Le Sueur, C. Bellenghi, M. Romagnoni, Angelo Cruciani, Giorgio Pettinari, Cryogénie (NEEL - Cryo), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Hélium : du fondamental aux applications (NEEL - HELFA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Silicon ,Physics::Instrumentation and Detectors ,Dark matter ,chemistry.chemical_element ,7. Clean energy ,01 natural sciences ,Particle detector ,010305 fluids & plasmas ,energy: threshold ,phonon: detector ,neutrino nucleus: coherent interaction ,0103 physical sciences ,General Materials Science ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,induction ,activity report ,detector: design ,Physics ,Scattering ,Detector ,silicon ,dark matter: detector ,Coherent scattering ,Kinetic inductance detectors ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Computational physics ,chemistry ,cryogenics ,Scalability ,High Energy Physics::Experiment ,Neutrino ,Energy (signal processing) - Abstract
International audience; BULLKID is an R&D project on a cryogenic particle detector to search for rare low-energy processes such as low-mass dark matter and neutrino coherent scattering off nuclei. The detector unit we are designing consists in an array of ~ 100 silicon absorbers sensed by phonon-mediated, microwave-multiplexed kinetic inductance detectors, with energy threshold below 100 eV and total target mass around 30 g. The single detector unit will be engineered to ensure a straightforward scalability to a future kg-scale experiment.
- Published
- 2020
- Full Text
- View/download PDF
21. Lowering the Energy Threshold of the CUORE Experiment: Benefits in the Surface Alpha Events Reconstruction: Comparison Between Optimum Trigger and Derivative Trigger Performance in the Search for 0 νββ
- Author
-
L. Pattavina, Marco Pallavicini, L. Canonica, L. Marini, S. Di Domizio, C. Bucci, T. D. Gutierrez, G. Pessina, K. Wilson, Stefano Dell'Oro, Jonathan Ouellet, J. Johnston, G. Bari, Laura Cardani, L. Zanotti, J. Nikkel, L. Gironi, F. T. Avignone, H. Z. Huang, B. K. Fujikawa, G. Keppel, Stefano Pozzi, Y. G. Ma, Massimiliano Clemenza, Carlo Cosmelli, Davide Chiesa, C. Nones, A. Puiu, V. Pettinacci, S. Zucchelli, N. D. Scielzo, L. Pagnanini, C. Brofferio, T. O'Donnell, D. Q. Fang, Claudio Gotti, Ke Han, Reina H. Maruyama, M. Vignati, C. Rusconi, Stuart J. Freedman, D. D'Aguanno, Ettore Fiorini, V. Novati, James R. Wilson, Andrea Giachero, C. Rosenfeld, P. Gorla, F. Ferroni, C. Tomei, M. A. Franceschi, C. Pagliarone, D. Q. Adams, R. G. Huang, N. Casali, F. Terranova, Vasundhara Singh, K. Alfonso, C. J. Davis, Monica Sisti, B. Schmidt, Eric B. Norman, B. S. Wang, L. Ma, O. Azzolini, Y. Mei, Lindley Winslow, V. Sharma, T. Napolitano, S. Copello, I. Dafinei, M. Sakai, Paolo Carniti, Silvia Capelli, Xi-Guang Cao, Massimiliano Nastasi, K. M. Heeger, F. Bellini, S. Pirro, L. Cappelli, Oliviero Cremonesi, M. Biassoni, R. J. Creswick, G. Fantini, M. Pavan, V. Dompè, Giovanni Benato, A. D'Addabbo, C. Pira, A. Caminata, Ezio Previtali, S. Morganti, B. Welliver, Carlo Ligi, Evelyn Ferri, N. Moggi, Samuele Sangiorgio, A. Campani, A. Nucciotti, C. Alduino, M. Faverzani, Yu. G. Kolomensky, A. Branca, L. Taffarello, A. Giuliani, Danielle Speller, S. L. Wagaarachchi, N. Chott, Irene Nutini, S. Zimmermann, Campani, A, Adams, D, Alduino, C, Alfonso, K, Avignone, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Biassoni, M, Branca, A, Brofferio, C, Bucci, C, Caminata, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Chiesa, D, Chott, N, Clemenza, M, Copello, S, Cosmelli, C, Cremonesi, O, Creswick, R, D'Addabbo, A, D'Aguanno, D, Dafinei, I, Davis, C, Dell'Oro, S, Di Domizio, S, Dompe, V, Fang, D, Fantini, G, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fujikawa, B, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Heeger, K, Huang, R, Huang, H, Johnston, J, Keppel, G, Kolomensky, Y, Ligi, C, Ma, Y, Ma, L, Marini, L, Maruyama, R, Mei, Y, Moggi, N, Morganti, S, Napolitano, T, Nastasi, M, Nikkel, J, Nones, C, Norman, E, Novati, V, Nucciotti, A, Nutini, I, O'Donnell, T, Ouellet, J, Pagliarone, C, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Schmidt, B, Scielzo, N, Sharma, V, Singh, V, Sisti, M, Speller, D, Taffarello, L, Terranova, F, Tomei, C, Vignati, M, Wagaarachchi, S, Wang, B, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Zanotti, L, Zimmermann, S, Zucchelli, S, Campani A., Adams D.Q., Alduino C., Alfonso K., Avignone F.T., Azzolini O., Bari G., Bellini F., Benato G., Biassoni M., Branca A., Brofferio C., Bucci C., Caminata A., Canonica L., Cao X.G., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Chiesa D., Chott N., Clemenza M., Copello S., Cosmelli C., Cremonesi O., Creswick R.J., D'Addabbo A., D'Aguanno D., Dafinei I., Davis C.J., Dell'Oro S., Di Domizio S., Dompe V., Fang D.Q., Fantini G., Faverzani M., Ferri E., Ferroni F., Fiorini E., Franceschi M.A., Freedman S.J., Fujikawa B.K., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gutierrez T.D., Han K., Heeger K.M., Huang R.G., Huang H.Z., Johnston J., Keppel G., Kolomensky Y.G., Ligi C., Ma Y.G., Ma L., Marini L., Maruyama R.H., Mei Y., Moggi N., Morganti S., Napolitano T., Nastasi M., Nikkel J., Nones C., Norman E.B., Novati V., Nucciotti A., Nutini I., O'Donnell T., Ouellet J.L., Pagliarone C.E., Pagnanini L., Pallavicini M., Pattavina L., Pavan M., Pessina G., Pettinacci V., Pira C., Pirro S., Pozzi S., Previtali E., Puiu A., Rosenfeld C., Rusconi C., Sakai M., Sangiorgio S., Schmidt B., Scielzo N.D., Sharma V., Singh V., Sisti M., Speller D., Taffarello L., Terranova F., Tomei C., Vignati M., Wagaarachchi S.L., Wang B.S., Welliver B., Wilson J., Wilson K., Winslow L.A., Zanotti L., Zimmermann S., and Zucchelli S.
- Subjects
Particle physics ,Bolometers for dark matter research ,Physics::Instrumentation and Detectors ,trigger algorithm ,01 natural sciences ,Coincidence ,law.invention ,CUORE ,WIMP ,law ,Double beta decay ,0103 physical sciences ,General Materials Science ,Neutrinoless double beta decay ,010306 general physics ,Axion ,Physics ,010308 nuclear & particles physics ,Scattering ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Trigger algorithms ,Condensed Matter Physics ,Digital signal processing ,Atomic and Molecular Physics, and Optics ,Energy (signal processing) - Abstract
CUORE is a tonne-scale cryogenic experiment located at the Laboratori Nazionali del Gran Sasso that exploits bolometric technique to search for neutrinoless double beta decay of 130Te. Thanks to its very low background and large mass, CUORE is also a powerful tool to study a broad class of phenomena, such as solar axions and WIMP scattering. The ability to conduct such sensitive searches crucially depends on the energy threshold, which has to be kept as low as possible. In this contribution, we show how the trigger algorithm affects the sensitivity to low-energy phenomena and the interpretation of the energy spectrum. In particular, we focus on the impact that the trigger algorithm has on the identification of the coincidence events among different crystals and, consequently, on the reconstruction of the background.
- Published
- 2020
22. Pulse Response of a Kinetic Inductance Detector in the Nonlinear Regime
- Author
-
Angelo Cruciani, Laura Cardani, M. Vignati, N. Casali, Chiara Bellenghi, I. Colantoni, and Giorgio Pettinari
- Subjects
Physics ,Photon ,business.industry ,Physics::Instrumentation and Detectors ,Amplifier ,Microwave kinetic inductance detectors ,Detector ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Kinetic inductance ,010305 fluids & plasmas ,Power (physics) ,Thermal effects ,Resonator ,Nonlinear system ,Optics ,Kinetic inductance nonlinearity ,0103 physical sciences ,General Materials Science ,010306 general physics ,business ,Sensitivity (electronics) - Abstract
Over the last few years, kinetic inductance detectors (KIDs) became the object of increasing interest as photon and phonon detectors. From this perspective, the pulse response of such detectors deserves an in-depth study. In most applications, the sensitivity of the KID is ultimately limited by the white noise from the cryogenic amplifier, which is reduced by increasing the power supplied to the device. On the other hand, a high readout power leads to a nonlinear response of the microresonator, originating from the dependence on the current acquired by the kinetic inductance. This paper describes a model for the response to optical pulses of a KID driven to the nonlinear regime, taking into account not only the electrical effects but also the thermal ones induced by power absorption. The model has been validated on data collected using an aluminium resonator developed within the CALDER project (http://www.roma1.infn.it/exp/calder/).
- Published
- 2020
- Full Text
- View/download PDF
23. Status and results from the CUORE experiment
- Author
-
C. Bucci, T. D. Gutierrez, Silvia Capelli, Massimiliano Nastasi, C. Pira, L. Gironi, F. T. Avignone, X. G. Cao, S. Di Domizio, V. Dompè, L. Taffarello, Danielle Speller, L. Cappelli, Laura Cardani, H. Z. Huang, M. Pavan, M. A. Franceschi, B. K. Fujikawa, Stefano Pozzi, Carlo Ligi, C. Pagliarone, Y. Mei, Massimiliano Clemenza, Carlo Cosmelli, Stefano Dell'Oro, A. D’Addabbo, M. Vignati, Lindley Winslow, A. Campani, S. Zucchelli, G. Keppel, K. Wilson, Davide Chiesa, Claudio Gotti, R. G. Huang, M. Faverzani, Jonathan Ouellet, G. Bari, A. Branca, C. Brofferio, L. Ma, Deqing Fang, S. Pirro, C. Rusconi, N. Casali, A. Caminata, Ezio Previtali, S. Zimmermann, S. L. Wagaarachchi, S. Morganti, T. O'Donnell, B. Welliver, K. M. Heeger, G. Fantini, C. Nones, A. Puiu, V. Pettinacci, V. Sharma, D. D'Aguanno, J. Nikkel, N. Chott, Oliviero Cremonesi, Marco Pallavicini, G. Pessina, A. Giuliani, Yu. G. Kolomensky, Ke Han, Reina H. Maruyama, C. Rosenfeld, Stuart J. Freedman, P. Gorla, F. Ferroni, C. Tomei, C. J. Davis, L. Zanotti, Irene Nutini, Evelyn Ferri, Yu-Gang Ma, F. Terranova, N. Moggi, Samuele Sangiorgio, P. T. Surukuchi, A. Nucciotti, L. Pagnanini, C. Alduino, S. Copello, Paolo Carniti, Ettore Fiorini, V. Novati, Andrea Giachero, D. Q. Adams, K. Alfonso, L. Pattavina, N. D. Scielzo, L. Canonica, L. Marini, Vasundhara Singh, J. Johnston, B. Schmidt, B. S. Wang, O. Azzolini, I. Dafinei, M. Sakai, James R. Wilson, F. Bellini, Monica Sisti, R. J. Creswick, Giovanni Benato, Eric B. Norman, T. Napolitano, M. Biassoni, Campani, A, Adams, D, Alduino, C, Alfonso, K, Avignone, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Biassoni, M, Branca, A, Brofferio, C, Bucci, C, Caminata, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Chiesa, D, Chott, N, Clemenza, M, Copello, S, Cosmelli, C, Cremonesi, O, Creswick, R, D'Addabbo, A, D'Aguanno, D, Dafinei, I, Davis, C, Dell'Oro, S, Di Domizio, S, Dompe, V, Fang, D, Fantini, G, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fujikawa, B, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Heeger, K, Huang, R, Huang, H, Johnston, J, Keppel, G, Kolomensky, Y, Ligi, C, Ma, Y, Ma, L, Marini, L, Maruyama, R, Mei, Y, Moggi, N, Morganti, S, Napolitano, T, Nastasi, M, Nikkel, J, Nones, C, Norman, E, Novati, V, Nucciotti, A, Nutini, I, O'Donnell, T, Ouellet, J, Pagliarone, C, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Schmidt, B, Scielzo, N, Sharma, V, Singh, V, Sisti, M, Speller, D, Surukuchi, P, Taffarello, L, Terranova, F, Tomei, C, Vignati, M, Wagaarachchi, S, Wang, B, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Zanotti, L, Zimmermann, S, Zucchelli, S, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPhP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, CUORE, and Département de Physique des Particules (ex SPP) (DPP)
- Subjects
Nuclear and High Energy Physics ,data analysis method ,background: model ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Combinatorics ,CUORE ,double-beta decay: (0neutrino) ,bolometer ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Neutrinoless double beta decay ,010306 general physics ,activity report ,Physics ,010308 nuclear & particles physics ,29.90.+r ,Astronomy and Astrophysics ,Background model ,Atomic and Molecular Physics, and Optics ,tellurium: nuclide ,data management ,Two-neutrino double beta decay ,background model ,two-neutrino double beta decay ,experimental results - Abstract
Author(s): Campani, A; Adams, DQ; Alduino, C; Alfonso, K; Avignone, FT; Azzolini, O; Bari, G; Bellini, F; Benato, G; Biassoni, M; Branca, A; Brofferio, C; Bucci, C; Caminata, A; Canonica, L; Cao, XG; Capelli, S; Cappelli, L; Cardani, L; Carniti, P; Casali, N; Chiesa, D; Chott, N; Clemenza, M; Copello, S; Cosmelli, C; Cremonesi, O; Creswick, RJ; D'Addabbo, A; D'Aguanno, D; Dafinei, I; Davis, CJ; Dell'oro, S; Di Domizio, S; Dompe, V; Fang, DQ; Fantini, G; Faverzani, M; Ferri, E; Ferroni, F; Fiorini, E; Franceschi, MA; Freedman, SJ; Fujikawa, BK; Giachero, A; Gironi, L; Giuliani, A; Gorla, P; Gotti, C; Gutierrez, TD; Han, K; Heeger, KM; Huang, RG; Huang, HZ; Johnston, J; Keppel, G; Kolomensky, YG; Ligi, C; Ma, YG; Ma, L; Marini, L; Maruyama, RH; Mei, Y; Moggi, N; Morganti, S; Napolitano, T; Nastasi, M; Nikkel, J; Nones, C; Norman, EB; Novati, V; Nucciotti, A; Nutini, I; O'Donnell, T; Ouellet, JL; Pagliarone, CE; Pagnanini, L; Pallavicini, M; Pattavina, L; Pavan, M; Pessina, G; Pettinacci, V; Pira, C; Pirro, S; Pozzi, S | Abstract: The Cryogenic Underground Observatory for Rare Events (CUORE) is a tonne-scale cryogenic experiment located at the Laboratori Nazionali del Gran Sasso that exploits bolometric technique to search for neutrinoless double beta decay (0νββ) of 130Te. The detector consists of a segmented array of 988 natural TeO2 cubic crystals arranged in a cylindrical compact structure of 19 towers. The detector construction was completed in August 2016 and data taking started in Spring 2017. In this work, we present a brief description of the bolometric technique for rare events search and the CUORE detector, then we concentrate on the data analysis results. In this respect, we focus on the procedure for data processing and on the first 0νββ results we obtained from a total TeO2 exposure of 86.3kg yr. Next, we illustrate the main background sources and the CUORE background model, from which we obtain the most precise measurement of 130Te 2νββ half-life to date. Finally, we discuss the improvements achieved with 2018 and 2019 detector optimization campaigns and the current perspectives of our experiment.
- Published
- 2020
- Full Text
- View/download PDF
24. Final results of the CUPID-0 Phase i experiment
- Author
-
G. Keppel, C. Nones, N. Casali, A. Puiu, S. Pozzi, Massimiliano Clemenza, C. Bucci, Miriam Lucio Martinez, Angelo Cruciani, Oliviero Cremonesi, S. S. Nagorny, Silvia Capelli, Massimiliano Nastasi, D. Orlandi, Marco Pallavicini, L. Pagnanini, C. Brofferio, A. S. Zolotarova, G. Pessina, A. Giuliani, L. Gironi, C. Gotti, I. Dafinei, Stefano Nisi, Paolo Carniti, M. Pavan, Davide Chiesa, S. Pirro, L. Pattavina, F. Bellini, Jeffrey W. Beeman, O. Azzolini, S. Di Domizio, Laura Cardani, M. Vignati, K. Schäffner, C. Rusconi, P. Gorla, F. Ferroni, C. Tomei, V. Pettinacci, M. Beretta, E. Previtali, M. Biassoni, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Casali, N, Azzolini, O, Beeman, J, Bellini, F, Beretta, M, Biassoni, M, Brofferio, C, Bucci, C, Capelli, S, Cardani, L, Carniti, P, Chiesa, D, Clemenza, M, Cremonesi, O, Cruciani, A, Dafinei, I, Di Domizio, S, Ferroni, F, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Keppel, G, Martinez, M, Nagorny, S, Nastasi, M, Nisi, S, Nones, C, Orlandi, D, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rusconi, C, Schaffner, K, Tomei, C, Vignati, M, and Zolotarova, A
- Subjects
Physics ,History ,Detector ,Phase (waves) ,talk: Toyama 2019/09/09 ,background: model ,01 natural sciences ,Double beta decay ,010305 fluids & plasmas ,Computer Science Applications ,Education ,crystal ,Gran Sasso ,Nuclear physics ,double-beta decay: (0neutrino) ,0103 physical sciences ,calorimeter: cryogenics ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,detector: resolution ,010306 general physics ,Counting rate ,experimental results - Abstract
International audience; A convincing observation of neutrino-less double beta decay (0vDBD) relies on the possibility of operating high-energy resolution detectors in background-free conditions. Scintillating cryogenic calorimeters are one of the most promising tools to fulfill the requirements for a next-generation experiment. Several steps have been taken to demonstrate the maturity of this technique, starting form the successful experience of CUPID-0. The CUPID-0 experiment collected almost 10 kg y of exposure, running 26 Zn82Se crystals during two years of continuous detector operation. The complete rejection of the dominant α background was demonstrated, measuring the lowest counting rate in the region of interest for this technique. Furthermore, the most stringent limit on the 82Se 0vDBD was established. In this contribution we present the final results of CUPID-0 phase-I, including a detailed model of the background and the measurement of the 2vDBD half-life.
- Published
- 2020
- Full Text
- View/download PDF
25. Evidence of Single State Dominance in the Two-Neutrino Double- β Decay of Se82 with CUPID-0
- Author
-
J. Kotila, C. Nones, N. Casali, A. Puiu, S. Di Domizio, Laura Cardani, Davide Chiesa, Stefano Pozzi, Angelo Cruciani, Ezio Previtali, L. Gironi, M. Vignati, L. Pattavina, A. Giuliani, Jeffrey W. Beeman, Massimiliano Clemenza, Oliviero Cremonesi, Stefano Nisi, Marco Pallavicini, G. Pessina, V. Pettinacci, Paolo Carniti, C. Brofferio, Claudio Gotti, S. S. Nagorny, Massimiliano Nastasi, C. Bucci, Miriam Lucio Martinez, C. Rusconi, F. Bellini, L. Pagnanini, Simone Capelli, M. Pavan, A. S. Zolotarova, S. Pirro, M. Beretta, P. Gorla, F. Ferroni, C. Tomei, K. Schäffner, I. Dafinei, O. Azzolini, D. Orlandi, G. Keppel, and M. Biassoni
- Subjects
Physics ,Particle physics ,Double beta decay ,0103 physical sciences ,General Physics and Astronomy ,Neutrino ,010306 general physics ,01 natural sciences - Abstract
We report on the measurement of the two-neutrino double-β decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-β decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.60±0.03(stat) _{-0.13}^{+0.19}(syst)]×10^{19} yr. The very high signal-to-background ratio, along with the detailed reconstruction of the background sources allowed us to identify the single state dominance as the underlying mechanism of such a process, demonstrating that the higher state dominance hypothesis is disfavored at the level of 5.5σ.
- Published
- 2019
- Full Text
- View/download PDF
26. Na-based crystal scintillators for next-generation rare event searches
- Author
-
I. I. Novoselov, S. Sorbino, Laura Cardani, S.S. Nagorny, K. Schäffner, S. Pirro, F. Bellini, Stefano Nisi, V.N. Shlegel, C. Rusconi, Jeffrey W. Beeman, L. Pagnanini, and V.D. Grigorieva
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Scintillating bolometers ,Dark matter ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Scintillator ,01 natural sciences ,Double beta decay ,Particle identification ,Crystal ,Nuclear physics ,Particle identification methods ,0103 physical sciences ,Cryogenic detectors ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Instrumentation ,Event (particle physics) ,Nuclear Experiment - Abstract
The growing interest in clarifying the controversial situation in the Dark Matter sector has driven the experimental efforts towards new ways to investigate the long-standing DAMA/LIBRA result. Among them, low-temperature calorimeters based on Na-containing scintillating crystals offer the possibility to clarify the nature of the measured signal via particle identification. Here we report the first preliminary measurement of Na-containing crystals, based on a material different from NaI, i.e. Na 2 Mo 2 O 7 and Na 2 W 2 O 7 , pointing out their performance in terms of energy resolution, light yield, and particle identification.
- Published
- 2019
27. The CUORE Detector and Results
- Author
-
James R. Wilson, C. Rosenfeld, S. Morganti, N. D. Scielzo, Carlo Ligi, V. Dompè, A. D'Addabbo, A. Campani, P. Gorla, F. Ferroni, C. Tomei, Monica Sisti, S. Copello, S. L. Wagaarachchi, J. Nikkel, L. Zanotti, Paolo Carniti, C. Pira, M. Faverzani, N. Casali, N. Chott, Simone Capelli, C. J. Davis, Giovanni Benato, H. Z. Huang, G. Keppel, L. Gironi, Ettore Fiorini, F. Terranova, G. Fantini, C. Nones, A. Puiu, S. Zucchelli, V. Novati, Andrea Giachero, Massimiliano Clemenza, Carlo Cosmelli, F. T. Avignone, Irene Nutini, Yu. G. Kolomensky, Massimiliano Nastasi, L. Canonica, L. Marini, V. Pettinacci, K. Wilson, Eric B. Norman, T. O'Donnell, D. Q. Adams, Vasundhara Singh, Jonathan Ouellet, K. Alfonso, S. Di Domizio, J. Johnston, Claudio Gotti, G. Bari, Y. Mei, D. D'Aguanno, T. Napolitano, Evelyn Ferri, Laura Cardani, L. Taffarello, Stefano Dell'Oro, B. K. Fujikawa, Stefano Pozzi, F. Bellini, B. Schmidt, Y. G. Ma, Oliviero Cremonesi, M. Biassoni, Danielle Speller, B. S. Wang, Xi-Guang Cao, C. Brofferio, M. Vignati, M. Pavan, L. Pagnanini, K. M. Heeger, Davide Chiesa, O. Azzolini, N. Moggi, Marco Pallavicini, C. Rusconi, C. Bucci, T. D. Gutierrez, R. J. Creswick, Samuele Sangiorgio, Lindley Winslow, A. Giuliani, Ke Han, Reina H. Maruyama, I. Dafinei, M. Sakai, G. Pessina, Stuart J. Freedman, L. Pattavina, A. Nucciotti, C. Alduino, S. Zimmermann, S. Pirro, L. Ma, D. Q. Fang, A. Branca, M. A. Franceschi, R. G. Huang, L. Cappelli, C. Pagliarone, A. Caminata, Ezio Previtali, B. Welliver, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Nutini, I, Adams, D, Alduino, C, Alfonso, K, Avignone, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Biassoni, M, Branca, A, Brofferio, C, Bucci, C, Caminata, A, Campani, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Chiesa, D, Chott, N, Clemenza, M, Copello, S, Cosmelli, C, Cremonesi, O, Creswick, R, D’Addabbo, A, D’Aguanno, D, Dafinei, I, Davis, C, Dell’Oro, S, Domizio, S, Dompè, V, Fang, D, Fantini, G, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fujikawa, B, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Heeger, K, Huang, R, Huang, H, Johnston, J, Keppel, G, Kolomensky, Y, Ligi, C, Ma, Y, Ma, L, Marini, L, Maruyama, R, Mei, Y, Moggi, N, Morganti, S, Napolitano, T, Nastasi, M, Nikkel, J, Nones, C, Norman, E, Novati, V, Nucciotti, A, O’Donnell, T, Ouellet, J, Pagliarone, C, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Schmidt, B, Scielzo, N, Singh, V, Sisti, M, Speller, D, Taffarello, L, Terranova, F, Tomei, C, Vignati, M, Wagaarachchi, S, Wang, B, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Zanotti, L, Zimmermann, S, Zucchelli, S, Nutini I., Adams D.Q., Alduino C., Alfonso K., Avignone F.T., Azzolini O., Bari G., Bellini F., Benato G., Biassoni M., Branca A., Brofferio C., Bucci C., Caminata A., Campani A., Canonica L., Cao X.G., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Chiesa D., Chott N., Clemenza M., Copello S., Cosmelli C., Cremonesi O., Creswick R.J., D'Addabbo A., D'Aguanno D., Dafinei I., Davis C.J., Dell'Oro S., Domizio S.D., Dompe V., Fang D.Q., Fantini G., Faverzani M., Ferri E., Ferroni F., Fiorini E., Franceschi M.A., Freedman S.J., Fujikawa B.K., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gutierrez T.D., Han K., Heeger K.M., Huang R.G., Huang H.Z., Johnston J., Keppel G., Kolomensky Y.G., Ligi C., Ma Y.G., Ma L., Marini L., Maruyama R.H., Mei Y., Moggi N., Morganti S., Napolitano T., Nastasi M., Nikkel J., Nones C., Norman E.B., Novati V., Nucciotti A., O'Donnell T., Ouellet J.L., Pagliarone C.E., Pagnanini L., Pallavicini M., Pattavina L., Pavan M., Pessina G., Pettinacci V., Pira C., Pirro S., Pozzi S., Previtali E., Puiu A., Rosenfeld C., Rusconi C., Sakai M., Sangiorgio S., Schmidt B., Scielzo N.D., Singh V., Sisti M., Speller D., Taffarello L., Terranova F., Tomei C., Vignati M., Wagaarachchi S.L., Wang B.S., Welliver B., Wilson J., Wilson K., Winslow L.A., Zanotti L., Zimmermann S., Zucchelli S., and Département de Physique des Particules (ex SPP) (DPhP)
- Subjects
Particle physics ,0 νββ ,Cryogenics ,CUORE ,Macro-calorimeters ,Neutrinos ,Physics::Instrumentation and Detectors ,Cryogenic ,01 natural sciences ,tellurium: oxygen ,010305 fluids & plasmas ,crystal ,double-beta decay: (0neutrino) ,Double beta decay ,0103 physical sciences ,Neutrino ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,General Materials Science ,Beta (velocity) ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,activity report ,detector: design ,Physics ,0νββ ,0 nu beta beta ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,High Energy Physics::Experiment ,tellurium: nuclide ,Macro-calorimeter ,experimental results - Abstract
The cryogenic underground observatory for rare events (CUORE) is a cryogenic experiment searching for neutrinoless double beta decay ($$0\nu \beta \beta$$0νββ) of $${^{130}\hbox {Te}}$$130Te. The detector consists of an array of $$988\,{\hbox {TeO}_{2}}$$988TeO2 crystals arranged in a compact cylindrical structure of 19 towers. We report the CUORE initial operations and optimization campaigns. We then present the CUORE results on $$0\nu \beta \beta$$0νββ and $$2\nu \beta \beta$$2νββ decay of $${^{130}\hbox {Te}}$$130Te obtained from the analysis of the physics data acquired in 2017.
- Published
- 2019
- Full Text
- View/download PDF
28. Precise measurement of 2ν2$\beta$ decay of $^{100}$Mo with Li$_2$MoO$_4$ low temperature detectors: Preliminary results
- Author
-
S. Sorbino, C. Nones, G. Pessina, Yu. A. Borovlev, J. Kotila, L. Dumoulin, E. Queguiner, A. S. Barabash, M. Chapellier, E. Previtali, O. G. Polischuk, M. Xue, J. Gascon, X-F. Navick, P. Pari, B. Schmidt, M. Kleifges, L. Pagnanini, L. Pattavina, F. Bellini, V.V. Kobychev, N. Besson, M. Pavan, C. Tomei, S. Marnieros, H. Z. Huang, A. Cazes, S. Pirro, B. Paul, R.Huang Lbnl, Federico Ferri, R. Maisonobe, K. Schäffner, M. Gros, Ch. Bourgeois, V. I. Tretyak, M. De Jesus, K. Eitel, H. Khalife, P. de Marcillac, L. Vagneron, M. de Combarieu, E. Olivieri, E. Guerard, C. Rusconi, E. P. Makarov, A. Beno, V.N. Shlegel, D. V. Poda, Yao Shen, J. Johnston, Yu. G. Kolomensky, L. Gironi, J. Billard, A. Giuliani, S. I. Konovalov, N. Casali, I. Dafinei, E. Armengaud, V. B. Brudanin, F. Charlieux, T. Redon, C. Augier, Laura Cardani, A. Juillard, Haiping Peng, Lindley Winslow, Matias Velázquez, B.F. Fujikawa, F.A. Danevich, M. Beretta, V. I. Umatov, M. Vignati, A. Leder, E. Yakushev, M. Weber, S. V. Rozov, V. Novati, V.D. Grigorieva, Ph. Camus, A. S. Zolotarova, P. Loaiza, Luc Bergé, B. Siebenborn, V. Sanglard, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut Rayonnement Matière de Saclay (IRAMIS), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Hélium : du fondamental aux applications (NEEL - HELFA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Cryogénie (NEEL - Cryo), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Armengaud, E, Augier, C, Barabash, A, Bellini, F, Beno, A, Beretta, M, Berge, L, Besson, N, Billard, J, Borovlev, Y, Bourgeois, C, Brudanin, V, Camus, P, Cardani, L, Casali, N, Cazes, A, Chapellier, M, Charlieux, F, De Combarieu, M, Danevich, F, Dafinei, I, De Jesus, M, Dumoulin, L, Eitel, K, Ferri, F, Fujikawa, B, Gascon, J, Gironi, L, Giuliani, A, Grigorieva, V, Gros, M, Guerard, E, Huang, H, Huang, R, Johnston, J, Juillard, A, Khalife, H, Kleifges, M, Kobychev, V, Kolomensky, Y, Konovalov, S, Leder, A, Kotila, J, Loaiza, P, Maisonobe, R, Makarov, E, De Marcillac, P, Marnieros, S, Navick, X, Nones, C, Novati, V, Olivieri, E, Pagnanini, L, Pari, P, Pattavina, L, Pavan, M, Paul, B, Peng, H, Pessina, G, Pirro, S, Poda, D, Polischuk, O, Previtali, E, Queguiner, E, Redon, T, Rozov, S, Rusconi, C, Sanglard, V, Schaffner, K, Shen, Y, Schmidt, B, Shlegel, V, Siebenborn, B, Sorbino, S, Tomei, C, Tretyak, V, Umatov, V, Vagneron, L, Velazquez, M, Vignati, M, Weber, M, Winslow, L, Xue, M, Yakushev, E, and Zolotarova, A
- Subjects
Lithium molybdate ,Materials science ,energy: ground state ,Analytical chemistry ,lifetime: measured ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,law.invention ,chemistry.chemical_compound ,background: low ,bolometer ,temperature: low ,law ,Double beta decay ,0103 physical sciences ,double-beta decay: (2neutrino) ,010306 general physics ,detector: temperature ,molybdenum: nuclide ,010308 nuclear & particles physics ,Bolometer ,Detector ,Beta decay ,molybdenum: semileptonic decay ,chemistry ,Underground laboratory ,scintillation counter: crystal ,double beta decay, scintillating bolometers ,Ground state ,experimental results - Abstract
International audience; The half-life of 100Mo relatively to the 2ν2β decay to the ground state of 100Ru was measured as T1/2 = (6.99±0.15) × 1018 yr with the help of enriched in 100Mo lithium molybdate scintillating bolometers in the EDELWEISS-III low background set-up at the Modane underground laboratory. This is the most accurate value of the 2ν2β half-life of 100Mo.
- Published
- 2019
- Full Text
- View/download PDF
29. CUORE: The first bolometric experiment at the ton scale for the search for neutrino-less double beta decay
- Author
-
James R. Wilson, N. Moggi, Monica Sisti, Carlo Cosmelli, Samuele Sangiorgio, Lindley Winslow, Jeremy S. Cushman, C. Rosenfeld, A. Nucciotti, Claudio Gotti, C. Alduino, C. Bucci, T. D. Gutierrez, S. Copello, V. Pettinacci, P. Gorla, F. Ferroni, C. Tomei, C. Brofferio, M. Faverzani, Stefano Pirro, D. D'Aguanno, S. Morganti, Paolo Carniti, A. Giuliani, Davide Chiesa, C. Rusconi, C. J. Davis, I. Dafinei, M. Sakai, M. Pavan, S. Zucchelli, K. Wilson, Y. Mei, N. Chott, S. Di Domizio, L. Cappelli, Eric B. Norman, T. Napolitano, V. Dompè, Oliviero Cremonesi, Jonathan Ouellet, G. Bari, A. D'Addabbo, Stefano Dell'Oro, M. Clemenza, Laura Cardani, T. Wise, D. Q. Fang, B. K. Fujikawa, Vasundhara Singh, Stefano Pozzi, Xi-Guang Cao, H. Z. Huang, K. M. Heeger, G. Keppel, M. Biassoni, L. Taffarello, C. Pagliarone, S. Zimmermann, Marco Pallavicini, T. O'Donnell, A. Caminata, Carlo Ligi, Yu. G. Kolomensky, Ezio Previtali, G. Pessina, B. Schmidt, Danielle Speller, B. S. Wang, B. Welliver, M. Vignati, O. Azzolini, Irene Nutini, Ettore Fiorini, V. Novati, Andrea Giachero, A. Campani, C. Pira, L. Pattavina, A. Drobizhev, Silvia Capelli, C. Nones, A. Puiu, F. Terranova, Yu-Gang Ma, Massimiliano Nastasi, D. Q. Adams, K. Alfonso, N. Casali, Giovanni Benato, M. A. Franceschi, G. Fantini, A. Branca, R. G. Huang, Ke Han, Reina H. Maruyama, Stuart J. Freedman, S. L. Wagaarachchi, L. Gironi, F. T. Avignone, A. Bersani, R. J. Creswick, F. Bellini, A. Leder, N. D. Scielzo, L. Zanotti, L. Canonica, L. Marini, J. Johnston, Evelyn Ferri, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Adams D.Q., Alduino C., Alfonso K., Avignone F.T., Azzolini O., Bari G., Bellini F., Benato G., Bersani A., Biassoni M., Branca A., Brofferio C., Bucci C., Caminata A., Campani A., Canonica L., Cao X.G., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Chiesa D., Chott N., Clemenza M., Copello S., Cosmelli C., Cremonesi O., Creswick R.J., Cushman J.S., D'Addabbo A., D'Aguanno D., Dafinei I., Davis C.J., Dell'Oro S., Di Domizio S., Dompe V., Drobizhev A., Fang D.Q., Fantini G., Faverzani M., Ferri E., Ferroni F., Fiorini E., Franceschi M.A., Freedman S.J., Fujikawa B.K., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gutierrez T.D., Han K., Heeger K.M., Huang R.G., Huang H.Z., Johnston J., Keppel G., Kolomensky Y.G., Leder A., Ligi C., Ma Y.G., Marini L., Maruyama R.H., Mei Y., Moggi N., Morganti S., Napolitano T., Nastasi M., Nones C., Norman E.B., Novati V., Nucciotti A., Nutini I., O'Donnell T., Ouellet J.L., Pagliarone C.E., Pallavicini M., Pattavina L., Pavan M., Pessina G., Pettinacci V., Pira C., Pirro S., Pozzi S., Previtali E., Puiu A., Rosenfeld C., Rusconi C., Sakai M., Sangiorgio S., Schmidt B., Scielzo N.D., Singh V., Sisti M., Speller D., Taffarello L., Terranova F., Tomei C., Vignati M., Wagaarachchi S.L., Wang B.S., Welliver B., Wilson J., Wilson K., Winslow L.A., Wise T., Zanotti L., Zimmermann S., Zucchelli S., Département de Physique des Particules (ex SPP) (DPhP), Adams, D, Alduino, C, Alfonso, K, Avignone, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Bersani, A, Biassoni, M, Branca, A, Brofferio, C, Bucci, C, Caminata, A, Campani, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Chiesa, D, Chott, N, Clemenza, M, Copello, S, Cosmelli, C, Cremonesi, O, Creswick, R, Cushman, J, D'Addabbo, A, D'Aguanno, D, Dafinei, I, Davis, C, Dell'Oro, S, Di Domizio, S, Dompe, V, Drobizhev, A, Fang, D, Fantini, G, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fujikawa, B, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Heeger, K, Huang, R, Huang, H, Johnston, J, Keppel, G, Kolomensky, Y, Leder, A, Ligi, C, Ma, Y, Marini, L, Maruyama, R, Mei, Y, Moggi, N, Morganti, S, Napolitano, T, Nastasi, M, Nones, C, Norman, E, Novati, V, Nucciotti, A, Nutini, I, O'Donnell, T, Ouellet, J, Pagliarone, C, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Schmidt, B, Scielzo, N, Singh, V, Sisti, M, Speller, D, Taffarello, L, Terranova, F, Tomei, C, Vignati, M, Wagaarachchi, S, Wang, B, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Wise, T, Zanotti, L, Zimmermann, S, and Zucchelli, S
- Subjects
Cryostat ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Dark matter ,energy resolution ,01 natural sciences ,tellurium: oxygen ,law.invention ,Nuclear physics ,energy: threshold ,CUORE ,Bolometers ,Neutrinoless double beta decay ,Ton-scale detector ,double-beta decay: (0neutrino) ,bolometer ,law ,Observatory ,Double beta decay ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation ,activity report ,background: suppression ,detector: design ,Neutrinoless double beta decay, Ton-scale detector, Bolometers ,Physics ,010308 nuclear & particles physics ,Bolometer ,Detector ,sensitivity ,cryogenics ,High Energy Physics::Experiment ,Neutrino ,performance - Abstract
The Cryogenic Underground Observatory for Rare Events (CUORE) is the most massive bolometric experiment searching for neutrino-less double beta (0 ν β β ) decay. The detector consists of an array of 988 TeO 2 crystals (742 kg) arranged in a compact cylindrical structure of 19 towers. This paper will describe the CUORE experiment, including the cryostat, and present the detector performance during the first year of running. Additional detail will describe the effort made in improving the energy resolution in the 130Te 0 ν β β decay region of interest (ROI) and the suppression of backgrounds. A description of work to lower the energy threshold in order to give CUORE the sensitivity to search for other rare events, such as dark matter, will also be provided.
- Published
- 2019
- Full Text
- View/download PDF
30. Results on 82Se 2νββ with CUPID-0 Phase I
- Author
-
S. S. Nagorny, Angelo Cruciani, Marco Pallavicini, S. Pirro, Oliviero Cremonesi, C. Rusconi, D. Orlandi, O. Azzolini, V. Pettinacci, Massimiliano Clemenza, G. Keppel, I. Dafinei, Davide Chiesa, Jeffrey W. Beeman, Stefano Nisi, C. Brofferio, S. Di Domizio, C. Gotti, Laura Cardani, C. Bucci, Miriam Lucio Martinez, M. Vignati, A. S. Zolotarova, C. Nones, A. Puiu, N. Casali, Simone Capelli, L. Pagnanini, Paolo Carniti, F. Bellini, L. Gironi, G. Pessina, E. Previtali, M. Pavan, P. Gorla, F. Ferroni, C. Tomei, M. Beretta, K. Schäffner, Massimiliano Nastasi, A. Giuliani, S. Pozzi, M. Biassoni, L. Pattavina, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
History ,Particle physics ,media_common.quotation_subject ,Electron ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Asymmetry ,crystal ,Education ,temperature: low ,Double beta decay ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,double-beta decay: (2neutrino) ,Beta (velocity) ,010306 general physics ,Absolute zero ,media_common ,Physics ,nucleus: decay ,background ,010308 nuclear & particles physics ,nucleus: many-body problem ,Fundamental interaction ,Computer Science Applications ,electron: spectrum ,intermediate state ,Neutrino ,asymmetry ,Radioactive decay - Abstract
The nucleus is an extraordinarily complex object where fundamental forces are at work. The solution of this many-body problem has challenged physicists for decades: several models with complementary virtues and flaws have been adopted, none of which has a universal predictive capability. Double beta decay is a second order weak nuclear decay whose precise measurement might steer fundamental improvements in nuclear theory. Its knowledge paves the way to a much better understanding of many body nuclear dynamics and clarifies, in particular, the role of multiparticle states. This is a useful input to a complete understanding of the dynamics of neutrino-less double beta decay, the chief physical process whose discovery may shed light to matter-antimatter asymmetry of the universe and unveil the true nature of neutrinos. Here, we report the study of 2νββ-decay in 82Se with the CUPID-0 detector, an array of ZnSe crystals maintained at a temperature close to ‘absolute zero’ in an ultralow background environment. Thanks to the unprecedented accuracy in the measurement of the two electrons spectrum, we prove that the decay is dominated by a single intermediate state. We obtain also the most precise value for the 82Se 2νββ-decay half-life of T 1 / 2 2 ν = [ 8.6 + 0.2 − 0.1 ] × 10 19 yr.
- Published
- 2020
- Full Text
- View/download PDF
31. Result on the neutrinoless double beta decay search of 82 Se with the CUPID-0 experiment
- Author
-
A. S. Zolotarova, Paolo Carniti, Stefano Nisi, A. Puiu, Oliverio Cremonesi, Angelo Cruciani, M. Clemenza, L. Pattavina, Ezio Previtali, Marco Pallavicini, M. Beretta, Sergio Di Domizio, A. D'Addabbo, L. Pagnanini, P. Gorla, F. Ferroni, L. Gironi, N. Casali, M. Pavan, G. Pessina, Karoline Schäffner, Laura Cardani, Stefano Pozzi, V. Palmieri, C. Bucci, Silvia Capelli, Massimiliano Nastasi, Jeffrey W. Beeman, Claudia Nones, Lorenzo Cassina, Claudio Gotti, Maria Teresa Barrera, Silvio Morganti, M. Vignati, V. Pettinacci, Stefano Pirro, A. Giuliani, Sergei Nagorny, M. Biassoni, Lucia Canonica, F. Bellini, C. Rusconi, C. Brofferio, M. I. Martínez, Ioan Dafinei, Claudia Tomei, O. Azzolini, G. Keppel, D. Orlandi, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Bellini, F, Azzolini, O, Teresa Barrera, M, Beeman, J, Beretta, M, Biassoni, M, Brofferio, C, Bucci, C, Canonica, L, Capelli, S, Cardani, L, Carniti, P, Casali, N, Cassina, L, Clemenza, M, Cremonesi, O, Cruciani, A, D’Addabbo, A, Dafinei, I, Di Domizio, S, Ferroni, F, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Keppel, G, Martinez, M, Morganti, S, Nagorny, S, Nastasi, M, Nisi, S, Nones, C, Orlandi, D, Pagnanini, L, Pallavicini, M, Palmieri, V, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rusconi, C, Schäffner, K, Tomei, C, Vignati, M, and Zolotarova, A
- Subjects
Semileptonic decay ,lcsh:QC793-793.5 ,Large array ,General Physics and Astronomy ,Majorana neutrino ,Neutrinoless double beta decay ,Zn82Se scintillating cryogenic calorimeters ,Zn82Se scintillating cryogenic calorimeter ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,Particle identification ,law.invention ,scintillation counter: cryogenics ,Nuclear physics ,mass: scale ,background: low ,bolometer ,double-beta decay: (0neutrino) ,law ,Double beta decay ,0103 physical sciences ,Mass scale ,neutrino: mass ,010306 general physics ,Physics ,010308 nuclear & particles physics ,particle: energy ,Bolometer ,lcsh:Elementary particle physics ,semileptonic decay ,Gran Sasso ,calorimeter: cryogenics ,neutrino: Majorana ,particle identification ,α particles ,FIS/04 - FISICA NUCLEARE E SUBNUCLEARE - Abstract
CUPID-0 is the first large array of scintillating Zn 82 Se cryogenic calorimeters (bolometers) implementing particle identification for the search of the neutrinoless double beta decay (0 ν β β ). The detector consists of 24 enriched Zn 82 Se bolometers for a total 82 Se mass of 5.28 kg and it has been taking data in the underground LNGS (Italy) since March 2017. In this article we show how the dual read-out provides a powerful tool for the α particles rejection. The simultaneous use of the heat and light information allows us to reduce the background down to (3.2 − 1.1 + 1.3 )×10 − 3 counts/(keV kg year), an unprecedented level for cryogenic calorimeters. In a total exposure of 5.46 kg year Zn 82 Se we set the most stringent limit on the 0 ν β β decay 82 Se half-life T 1 / 2 0 ν > 4.0 × 10 24 year at 90% C.I.
- Published
- 2019
- Full Text
- View/download PDF
32. Phonon and light read out of a Li$_2$MoO$_4$ crystal with multiplexed kinetic inductance detectors
- Author
-
Angelo Cruciani, M. I. Martínez, N. Casali, Giorgio Pettinari, S. Di Domizio, Laura Cardani, M. Vignati, and I. Colantoni
- Subjects
Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,Kinetic Inductance Detector ,bolometer ,light readout ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Particle detector ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Double beta decay ,0103 physical sciences ,KID ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Engineering (miscellaneous) ,Nuclear Experiment ,Physics ,Scintillation ,Time constant ,Instrumentation and Detectors (physics.ins-det) ,021001 nanoscience & nanotechnology ,3. Good health ,Scintillation counter ,High Energy Physics::Experiment ,Neutrino ,Atomic physics ,0210 nano-technology ,Energy (signal processing) - Abstract
Molybdenum based crystals such as Li$_2$MoO$_4$ and CaMoO$_4$ are emerging as leading candidates for next generation experiments searching for neutrino-less double beta decay with cryogenic calorimeters (CUPID, AMoRE). The exquisite energy resolution and high radio-purity of these crystals come at the cost of a potentially detrimental background source: the two neutrinos double beta decay of $^{100}$Mo. Indeed, the fast half-life of this decay mode, combined with the slow response of cryogenic calorimeters, would result in pile-up events in the energy region of interest for neutrino-less double beta decay, reducing the experimental sensitivity. This background can be suppressed using fast and high sensitivity cryogenic light detectors, provided that the scintillation time constant itself does not limit the time resolution. We developed a new detection technique exploiting the high sensitivity, the fast time response and the multiplexing capability of Kinetic Inductance Detectors. We applied the proposed technique to a $2\times2\times2$ cm$^3$ Li$_2$MoO$_4$ crystal, which was chosen as baseline option for CUPID. We measured simultaneously both the phonon and scintillation signals with KIDs. We derived the scintillation time constant of this compound at millikelvin temperatures obtaining $\tau_{scint} = 84.5\pm4.5\rm{(syst)}\pm1.0\rm{(stat)}$ $\mu$s, constant between 10 and 190 mK., Comment: 7 pages, 9 figures
- Published
- 2019
- Full Text
- View/download PDF
33. First search for Lorentz violation in double beta decay with scintillating calorimeters
- Author
-
S. S. Nagorny, C. Gotti, Oliviero Cremonesi, Massimiliano Clemenza, O. Azzolini, L. Pattavina, N. Casali, V. Pettinacci, I. Dafinei, C. Brofferio, S. Di Domizio, Angelo Cruciani, M. Pavan, Ezio Previtali, Stefano Pirro, Marco Pallavicini, Laura Cardani, P. Gorla, F. Ferroni, C. Tomei, D. Orlandi, Stefano Nisi, M. Vignati, Irene Nutini, G. Pessina, F. Bellini, Paolo Carniti, K. Schäffner, M. Biassoni, M. Beretta, C. Rusconi, S. Pozzi, L. Gironi, C. Nones, A. Puiu, A. S. Zolotarova, C. Bucci, Miriam Lucio Martinez, Silvia Capelli, Massimiliano Nastasi, A. Giuliani, L. Pagnanini, G. Keppel, Davide Chiesa, Jeffrey W. Beeman, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, CUPID, Azzolini, O, Beeman, J, Bellini, F, Beretta, M, Biassoni, M, Brofferio, C, Bucci, C, Capelli, S, Cardani, L, Carniti, P, Casali, N, Chiesa, D, Clemenza, M, Cremonesi, O, Cruciani, A, Dafinei, I, Di Domizio, S, Ferroni, F, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Keppel, G, Martinez, M, Nagorny, S, Nastasi, M, Nisi, S, Nones, C, Nutini, I, Orlandi, D, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rusconi, C, Schäffner, K, Tomei, C, Vignati, M, and Zolotarova, A
- Subjects
Particle physics ,Physics - Instrumentation and Detectors ,Lorentz transformation ,double beta decay ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Bayesian ,law.invention ,Lorentz violation ,scintillating calorimeters ,symbols.namesake ,bolometer ,law ,Double beta decay ,0103 physical sciences ,Credible interval ,calorimeter ,Particle Physics Experiments ,CPT violation, scintillating calorimeters ,Limit (mathematics) ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,scintillation counter ,Physics ,010308 nuclear & particles physics ,Bolometer ,Isotropy ,double-beta decay ,Instrumentation and Detectors (physics.ins-det) ,violation: Lorentz ,Calorimeter ,Scintillation counter ,symbols ,High Energy Physics::Experiment ,experimental results - Abstract
We present the search for Lorentz violation in the double beta decay of ^{82}Se~with CUPID-0, using an exposure of 9.95 kg x y. We found no evidence for the searched signal and set a limit on the isotropic components of the Lorentz violating coefficient of $\mathring{a}_{\text{of}}^{(3)} < 4.1\cdot10^{-6}$ GeV (90\% Credible Interval). This results is obtained with a Bayesian analysis of the experimental data and fully includes the systematic uncertainties of the model. This is the first limit on $\mathring{a}_{\text{of}}^{(3)}$ obtained with a scintillating bolometer, showing the potentiality of this technique.
- Published
- 2019
- Full Text
- View/download PDF
34. CUORE: The first bolometric experiment at the ton scale for rare decay searches
- Author
-
A. Bersani, L. Pattavina, Oliviero Cremonesi, Massimiliano Clemenza, Carlo Cosmelli, C. Pagliarone, C. Rosenfeld, P. Gorla, H. Z. Huang, G. Keppel, F. Ferroni, C. Tomei, K. Wilson, V. Palmieri, C. Nones, Eric B. Norman, A. Puiu, Jonathan Ouellet, G. Bari, Claudio Gotti, T. Napolitano, C. Brofferio, L. Gironi, F. T. Avignone, C. J. Davis, A. Caminata, Ezio Previtali, B. Welliver, S. Copello, Guoqiang Zhang, Lorenzo Cassina, Evelyn Ferri, Paolo Carniti, L. Canonica, A. Giuliani, S. Di Domizio, M. M. Deninno, Davide Chiesa, L. Marini, C. Rusconi, Ettore Fiorini, M. Biassoni, N. Moggi, V. Novati, Andrea Giachero, F. Bellini, S. Zimmermann, Laura Cardani, J. Johnston, Ke Han, A. Branca, B. K. Fujikawa, Stefano Pozzi, L. Gladstone, D. Q. Adams, K. Alfonso, M. L. Di Vacri, Reina H. Maruyama, Samuele Sangiorgio, Stuart J. Freedman, C. Bucci, S. L. Wagaarachchi, T. D. Gutierrez, Miriam Lucio Martinez, Stefano Dell'Oro, R. Hennings-Yeomans, A. Nucciotti, R. J. Creswick, Stefano Pirro, N. Chott, D. D'Aguanno, C. Alduino, M. Vignati, M. Faverzani, S. Zucchelli, L. Cappelli, Giovanni Benato, N. Casali, Marco Pallavicini, Irene Nutini, Yu. G. Kolomensky, G. Pessina, S. Morganti, F. Terranova, Yu-Gang Ma, F. Reindl, H. W. Wang, T. O'Donnell, S. S. Nagorny, Y. Mei, Lindley Winslow, V. Dompè, M. Sakai, Xi-Guang Cao, A. D'Addabbo, K. M. Heeger, Carlo Ligi, N. D. Scielzo, A. Campani, T. Wise, L. Taffarello, Danielle Speller, L. Zanotti, I. Dafinei, C. Pira, A. Leder, D. Santone, Vasundhara Singh, B. Schmidt, B. S. Wang, D. Q. Fang, O. Azzolini, A. Drobizhev, Jeremy S. Cushman, M. A. Franceschi, R. G. Huang, Silvia Capelli, Massimiliano Nastasi, M. Pavan, James R. Wilson, Monica Sisti, Adams D.Q., Alduino C., Alfonso K., Avignone F.T., Azzolini O., Bari G., Bellini F., Benato G., Bersani A., Biassoni M., Branca A., Brofferio C., Bucci C., Caminata A., Campani A., Canonica L., Cao X.G., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Cassina L., Chiesa D., Chott N., Clemenza M., Copello S., Cosmelli C., Cremonesi O., Creswick R.J., Cushman J.S., D'Addabbo A., D'Aguanno D., Dafinei I., Davis C.J., Dell'Oro S., Deninno M.M., Domizio S.D., Vacri M.L.D., Dompe V., Drobizhev A., Fang D.Q., Faverzani M., Ferri E., Ferroni F., Fiorini E., Franceschi M.A., Freedman S.J., Fujikawa B.K., Giachero A., Gironi L., Giuliani A., Gladstone L., Gorla P., Gotti C., Gutierrez T.D., Han K., Heeger K.M., Hennings-Yeomans R., Huang R.G., Huang H.Z., Johnston J., Keppel G., Kolomensky Y.G., Leder A., Ligi C., Ma Y.G., Marini L., Martinez M., Maruyama R.H., Mei Y., Moggi N., Morganti S., Nagorny S.S., Napolitano T., Nastasi M., Nones C., Norman E.B., Novati V., Nucciotti A., Nutini I., O'Donnell T., Ouellet J.L., Pagliarone C.E., Pallavicini M., Palmieri V., Pattavina L., Pavan M., Pessina G., Pira C., Pirro S., Pozzi S., Previtali E., Puiu A., Reindl F., Rosenfeld C., Rusconi C., Sakai M., Sangiorgio S., Santone D., Schmidt B., Scielzo N.D., Singh V., Sisti M., Speller D., Taffarello L., Terranova F., Tomei C., Vignati M., Wagaarachchi S.L., Wang B.S., Wang H.W., Welliver B., Wilson J., Wilson K., Winslow L.A., Wise T., Zanotti L., Zhang G.Q., Zimmermann S., Zucchelli S., Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Département de Physique des Particules (ex SPP) (DPhP), Adams, D, Alduino, C, Alfonso, K, Avignone, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Bersani, A, Biassoni, M, Branca, A, Brofferio, C, Bucci, C, Caminata, A, Campani, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cassina, L, Chiesa, D, Chott, N, Clemenza, M, Copello, S, Cosmelli, C, Cremonesi, O, Creswick, R, Cushman, J, D’Addabbo, A, D’Aguanno, D, Dafinei, I, Davis, C, Dell’Oro, S, Deninno, M, Domizio, S, Vacri, M, Dompè, V, Drobizhev, A, Fang, D, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fujikawa, B, Giachero, A, Gironi, L, Giuliani, A, Gladstone, L, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Heeger, K, Hennings-Yeomans, R, Huang, R, Huang, H, Johnston, J, Keppel, G, Kolomensky, Y, Leder, A, Ligi, C, Ma, Y, Marini, L, Martinez, M, Maruyama, R, Mei, Y, Moggi, N, Morganti, S, Nagorny, S, Napolitano, T, Nastasi, M, Nones, C, Norman, E, Novati, V, Nucciotti, A, Nutini, I, O’Donnell, T, Ouellet, J, Pagliarone, C, Pallavicini, M, Palmieri, V, Pattavina, L, Pavan, M, Pessina, G, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Reindl, F, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Santone, D, Schmidt, B, Scielzo, N, Singh, V, Sisti, M, Speller, D, Taffarello, L, Terranova, F, Tomei, C, Vignati, M, Wagaarachchi, S, Wang, B, Wang, H, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Wise, T, Zanotti, L, Zhang, G, Zimmermann, S, and Zucchelli, S
- Subjects
Nuclear and High Energy Physics ,Cryogenic, Superconductive Devices ,Physics::Instrumentation and Detectors ,Cryogenic ,01 natural sciences ,tellurium: oxygen ,Combinatorics ,CUORE ,bolometer ,double-beta decay: (0neutrino) ,Superconductive Devices ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation ,detector: design ,activity report ,Physics ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Superconductive Device ,cryogenics ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,performance - Abstract
Author(s): Adams, DQ; Alduino, C; Alfonso, K; Avignone, FT; Azzolini, O; Bari, G; Bellini, F; Benato, G; Bersani, A; Biassoni, M; Branca, A; Brofferio, C; Bucci, C; Caminata, A; Campani, A; Canonica, L; Cao, XG; Capelli, S; Cappelli, L; Cardani, L; Carniti, P; Casali, N; Cassina, L; Chiesa, D; Chott, N; Clemenza, M; Copello, S; Cosmelli, C; Cremonesi, O; Creswick, RJ; Cushman, JS; D'Addabbo, A; D'Aguanno, D; Dafinei, I; Davis, CJ; Dell'Oro, S; Deninno, MM; Domizio, SD; Vacri, MLD; Dompe, V; Drobizhev, A; Fang, DQ; Faverzani, M; Ferri, E; Ferroni, F; Fiorini, E; Franceschi, MA; Freedman, SJ; Fujikawa, BK; Giachero, A; Gironi, L; Giuliani, A; Gladstone, L; Gorla, P; Gotti, C; Gutierrez, TD; Han, K; Heeger, KM; Hennings-Yeomans, R; Huang, RG; Huang, HZ; Johnston, J; Keppel, G; Kolomensky, YG; Leder, A; Ligi, C; Ma, YG; Marini, L; Martinez, M; Maruyama, RH; Mei, Y; Moggi, N; Morganti, S; Nagorny, SS; Napolitano, T; Nastasi, M; Nones, C; Norman, EB; Novati, V; Nucciotti, A; Nutini, I; O'Donnell, T; Ouellet, JL; Pagliarone, CE; Pallavicini, M | Abstract: The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay that has been able to reach the 1-ton scale. The detector consists of an array of 988 TeO2 crystals arranged in a cylindrical compact structure of 19 towers. The construction of the experiment and, in particular, the installation of all towers in the cryostat was completed in August 2016 and data taking started in spring 2017. In this contribution the achievement of the commissioning phase and the performance of the detector and the cryostat during the first physics run will be presented.
- Published
- 2019
- Full Text
- View/download PDF
35. CUPID-0: A double-readout cryogenic detector for Double Beta Decay search
- Author
-
D. Orlandi, Davide Chiesa, C. Brofferio, Jeffrey W. Beeman, G. Keppel, S. Di Domizio, C. Rusconi, M. Clemenza, Laura Cardani, K. Schäffner, Stefano Pozzi, L. Pattavina, M. Vignati, Claudio Gotti, S. S. Nagorny, M. Pavan, L. Pagnanini, I. Dafinei, P. Gorla, F. Ferroni, C. Tomei, Silvia Capelli, Marco Pallavicini, Massimiliano Nastasi, A. Giuliani, Paolo Carniti, G. Pessina, F. Bellini, C. Zolotarova, M. Beretta, V. Pettinacci, Stefano Pirro, C. Nones, A. Puiu, N. Casali, L. Gironi, M. Biassoni, O. Azzolini, C. Bucci, Miriam Lucio Martinez, Oliviero Cremonesi, S. Morganti, Angelo Cruciani, Ezio Previtali, Stefano Nisi, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPhP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Département de Physique des Particules (ex SPP) (DPP), Azzolini, O, Beeman, J, Bellini, F, Beretta, M, Biassoni, M, Brofferio, C, Bucci, C, Capelli, S, Cardani, L, Carniti, P, Casali, N, Chiesa, D, Clemenza, M, Cremonesi, O, Cruciani, A, Dafinei, I, Di Domizio, S, Ferroni, F, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Keppel, G, Martinez, M, Morganti, S, Nagorny, S, Nastasi, M, Nisi, S, Nones, C, Orlandi, D, Pagnanini, L, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rusconi, C, Schaffner, K, Tomei, C, Vignati, M, and Zolotarova, C
- Subjects
Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Crystal growth ,macro-bolometers ,Neutrino-less double beta decay ,7. Clean energy ,01 natural sciences ,Particle identification ,law.invention ,Nuclear physics ,double-beta decay: (0neutrino) ,bolometer ,law ,Double beta decay ,0103 physical sciences ,CUPID ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,selenium ,Instrumentation ,Scintillation ,activity report ,010302 applied physics ,Physics ,background ,Bolometer ,Detector ,zinc ,Alpha background ,Background level ,Gran Sasso ,FIS/01 - FISICA SPERIMENTALE ,ZnSe ,calorimeter: cryogenics ,scintillation counter: crystal ,Cryogenic detectors ,High Energy Physics::Experiment ,scintillating cryogenic calorimeter ,FIS/04 - FISICA NUCLEARE E SUBNUCLEARE ,performance - Abstract
CUPID-0 is the first large mass neutrino-less double beta decay ( 0 ν β β ) experiment based on cryogenic calorimeters with dual read-out of light and heat for background rejection. The detector assembly, consisting of 26 ZnSe crystals, 2 natural and 24 enriched at 95% in 82Se, all coupled with bolometric light detectors, has been constructed respecting very strict protocols and procedures, from the material selection during crystal growth to the new and innovative detector framework, in the attempt to achieve the best performance of the array. The successful construction of the detector lead to promising preliminary results, here presented. The array is in fact taking data underground at LNGS (Italy) since March 2017 and the particle identification, enabled by the light read-out, provides an unprecedented background level, for cryogenic calorimeters, of only 3.2 counts keV − 1 t − 1 yr − 1 in the region of interest of the 0 ν β β search for 82Se, namely around 3 MeV.
- Published
- 2019
- Full Text
- View/download PDF
36. Results on double beta decay of 82Se with CUPID-0 Phase i
- Author
-
Davide Chiesa, Jeffrey W. Beeman, A. S. Zolotarova, G. Keppel, L. Pattavina, Massimiliano Clemenza, Stefano Nisi, C. Bucci, S. Di Domizio, N. Casali, C. Rusconi, Laura Cardani, C. Gotti, Paolo Carniti, C. Brofferio, M. Vignati, Simone Capelli, V. Pettinacci, Oliviero Cremonesi, M. Biassoni, S. Pirro, E. Previtali, L. Gironi, S. S. Nagorny, Angelo Cruciani, O. Azzolini, Marco Pallavicini, I. Dafinei, F. Bellini, S. Pozzi, L. Pagnanini, M. Pavan, C. Nones, A. Puiu, Massimiliano Nastasi, A. Giuliani, D. Orlandi, G. Pessina, M. Beretta, P. Gorla, F. Ferroni, C. Tomei, K. Schäffner, Pagnanini, L, Azzolini, O, Beeman, J, Bellini, F, Beretta, M, Biassoni, M, Brofferio, C, Bucci, C, Capelli, S, Cardani, L, Carniti, P, Casali, N, Chiesa, D, Clemenza, M, Cremonesi, O, Cruciani, A, Dafinei, I, Di Domizio, S, Ferroni, F, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Keppel, G, Nagorny, S, Nastasi, M, Nisi, S, Nones, C, Orlandi, D, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rusconi, C, Schaffner, K, Tomei, C, Vignati, M, Zolotarova, A, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
measurement methods ,background: model ,Phase (waves) ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Lower limit ,law.invention ,Nuclear physics ,double-beta decay: (0neutrino) ,bolometer ,Region of interest ,law ,Double beta decay ,0103 physical sciences ,double-beta decay: (2neutrino) ,010306 general physics ,background: radioactivity ,scintillation counter ,Physics ,Measurement method ,010308 nuclear & particles physics ,Bolometer ,Detector ,Gran Sasso ,Scintillation counter ,calorimeter: cryogenics ,Neutrinoless Double Beta Decay, Scintillating Bolometers, Cryogenic Detector ,experimental results - Abstract
International audience; CUPID-0 is the first neutrinoless double beta decay (0νββ) experiment based on highly enriched scintillating bolometers. It consists in an array of Zn82Se detectors operated at LNGS since 2017. During the Phase I of data taking, concluded at the end of 2018, the experiment collected an exposure of 9.95 kg·yr of ZnSe. The simultaneous heat-light readout provides a powerful rejection of α-particles and allows us to suppress the background in the region of interest down to 3.5−0.9+1.0×10−3 counts/(keV·kg·y), an unprecedented level for this technique. Thanks to this achievement, we set the most stringent lower limit on the 82Se 0νββ half-life. Moreover, we have developed a full background model, which allows us to identify the origin of the events in the region of interest. The reconstruction of the CUPID-0 spectrum has enabled us to perform the most precise measurement of the 2νββ of 82Se.
- Published
- 2019
- Full Text
- View/download PDF
37. CUPID-0, challenges and achievements in the struggle of 0-background double-beta decay experiments
- Author
-
L. Gironi, N. Casali, G. Keppel, C. Nones, A. Puiu, D. Orlandi, A. D'Addabbo, I. Dafinei, Oliviero Cremonesi, Claudio Gotti, L. Pattavina, Marco Pallavicini, Lucia Canonica, S. Di Domizio, M. Clemenza, G. Pessina, F. Bellini, S. S. Nagorny, C. Bucci, Lorenzo Cassina, Miriam Lucio Martinez, A. Giuliani, Angelo Cruciani, Ezio Previtali, S. Morganti, Silvia Capelli, Laura Cardani, Stefano Pozzi, Massimiliano Nastasi, A. S. Zolotarova, L. Pagnanini, Jeffrey W. Beeman, M. T. Barrera, O. Azzolini, Paolo Carniti, M. Vignati, V. Palmieri, M. Biassoni, V. Pettinacci, Stefano Pirro, M. Pavan, K. Schäffner, P. Gorla, F. Ferroni, C. Tomei, E. Bossio, M. Beretta, C. Brofferio, C. Rusconi, Stefano Nisi, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Azzolini, O, Barrera, M, Beeman, J, Bellini, F, Beretta, M, Biassoni, M, Bossio, E, Brofferio, C, Bucci, C, Canonica, L, Capelli, S, Cardani, L, Carniti, P, Casali, N, Cassina, L, Clemenza, M, Cremonesi, O, Cruciani, A, D'Addabbo, A, Dafinei, I, Domizio, S, Ferroni, F, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Keppel, G, Martinez, M, Morganti, S, Nagorny, S, Nastasi, M, Nisi, S, Nones, C, Orlandi, D, Pagnanini, L, Pallavicini, M, Palmieri, V, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rusconi, C, Schäffner, K, Tomei, C, Vignati, M, and Zolotarova, A
- Subjects
Nuclear and High Energy Physics ,measurement methods ,shape analysis ,Cryogenic bolometer ,01 natural sciences ,Particle identification ,law.invention ,crystal ,Nuclear physics ,Crystal ,double-beta decay: (0neutrino) ,bolometer ,law ,Double beta decay ,0103 physical sciences ,Cryogenic bolometers ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,selenium ,Instrumentation ,background: radioactivity ,scintillation counter ,Nuclear and High Energy Physic ,Physics ,Scintillation ,010308 nuclear & particles physics ,Detector ,Bolometer ,zinc ,Scintillation counter ,Neutrinoless double-beta decay ,Zinc selenide scintillator ,particle identification ,performance ,Shape analysis (digital geometry) ,experimental results - Abstract
The background is the key issue of any experiment searching for the neutrinoless double beta decay (0 ν DBD) and one of the possible solutions is the use of high resolution detectors in which background can be actively discriminated. CUPID-0 is the first 0 ν DBD experiment based on scintillating bolometers able to perform efficient particle identification allowing for background reduction at the unprecedented level of ∼ 10−3 cts/(keV ⋅ kg ⋅ yr). This work makes an overview of the main problems and solutions applied in the construction of the CUPID-0 experimental apparatus, starting from the production of the crystal up to the assembly of the detector. Particular attention is payed to the methods applied to avoid the radio-contamination. The recovery of enriched Se loss along the crystal production cycle is discussed as the main challenge for the budget of this kind of experiments. The good bolometric performance of crystals is emphasized together with supplementary discrimination power offered in the case of ZnSe by the pulse shape analysis, besides the bare scintillation signal. We also make a brief report on detector performance and the results obtained till present which allowed us to establish the world best half-time limit on 82Se 0 ν DBD of >2.4 ⋅ 1024 yr (90% C.I.).
- Published
- 2019
- Full Text
- View/download PDF
38. Search of the neutrino-less double beta decay of $$^{82}$$ 82 Se into the excited states of $$^{82}$$ 82 Kr with CUPID-0
- Author
-
Angelo Cruciani, Ezio Previtali, E. Bossio, L. Canonica, Lorenzo Cassina, P. Gorla, F. Ferroni, C. Tomei, S. Di Domizio, I. Dafinei, Laura Cardani, Stefano Nisi, Stefano Pozzi, L. Pattavina, V. Pettinacci, Massimiliano Clemenza, M. Vignati, C. Brofferio, Claudio Gotti, Jeffrey W. Beeman, S. Morganti, C. Rusconi, M. Beretta, C. Nones, A. Puiu, V. Palmieri, G. Keppel, O. Azzolini, K. Schäffner, S. Pirro, M. T. Barrera, Oliviero Cremonesi, A. D'Addabbo, Marco Pallavicini, A. Giuliani, L. Gironi, M. Biassoni, G. Pessina, A. S. Zolotarova, S.S. Nagorny, C. Bucci, Miriam Lucio Martinez, N. Casali, L. Pagnanini, D. Orlandi, Paolo Carniti, F. Bellini, Massimiliano Nastasi, M. Pavan, and Simone Capelli
- Subjects
Physics ,Particle physics ,Physics and Astronomy (miscellaneous) ,010308 nuclear & particles physics ,Double beta decay ,Excited state ,0103 physical sciences ,Neutrino ,010306 general physics ,01 natural sciences ,Engineering (miscellaneous) - Abstract
The CUPID-0 experiment searches for double beta decay using cryogenic calorimeters with double (heat and light) read-out. The detector, consisting of 24 ZnSe crystals 95 $$\%$$ enriched in $$^{82}$$ Se and two natural ZnSe crystals, started data-taking in 2017 at Laboratori Nazionali del Gran Sasso. We present the search for the neutrino-less double beta decay of $$^{82}$$ Se into the 0 $$_1^+$$ , 2 $$_1^+$$ and 2 $$_2^+$$ excited states of $$^{82}$$ Kr with an exposure of 5.74 kg $$\cdot $$ yr (2.24 $$\times $$ 10 $$^{25}$$ emitters $$\cdot $$ yr). We found no evidence of the decays and set the most stringent limits on the widths of these processes: $$\varGamma $$ ( $$^{82}$$ Se $$\rightarrow ^{82}$$ Kr $$_{0_1^+}$$ )8.55 $$\times $$ 10 $$^{-24}$$ yr $$^{-1}$$ , $$\varGamma $$ ( $$^{82}$$ Se $$\rightarrow ^{82}$$ Kr $$_{2_1^+}$$ ) $$\,{
- Published
- 2018
- Full Text
- View/download PDF
39. Results from the Cuore Experiment
- Author
-
Deqing Fang, Benjamin Schmidt, A. Bersani, A. Caminata, L. Zanotti, S. Copello, N. Casali, Carlo Ligi, V. Dompè, C. Pira, Carlo Cosmelli, A. Campani, C. Bucci, Paolo Carniti, Chris Alduino, A. Leder, K. Wilson, C. Pagliarone, S. Zimmermann, Oliviero Cremonesi, Lindley Winslow, L. Gironi, R. Hennings-Yeomans, F. T. Avignone, Vivek Singh, Irene Nutini, T. Wise, Giovanni Benato, Ke Han, A. Branca, C. Brofferio, N. Moggi, Reina H. Maruyama, Jeremy S. Cushman, Jonathan Ouellet, Yu-Gang Ma, Claudia Tomei, G. Bari, L. Taffarello, L. Pattavina, M. Pavan, Eric B. Norman, Lucia Canonica, N. Chott, Danielle Speller, G. Fantini, Nick Scielzo, V. Novati, V. Pettinacci, Silvio Morganti, F. Bellini, T. Napolitano, Samuele Sangiorgio, T. D. Gutierrez, F. Terranova, Stefano Dell'Oro, M. Clemenza, Stefano Pirro, D. D'Aguanno, A. Nucciotti, O. Azzolini, Barbara Wang, A. Puiu, Sergio Di Domizio, A. D'Addabbo, M. Biassoni, Davide Chiesa, S. J. Freedman, G. Keppel, C. Rosenfeld, Silvia Capelli, M. Faverzani, Y. u. G. Kolomensky, P. Gorla, Massimiliano Nastasi, Claudia Nones, F. Ferroni, Claudio Gotti, Laura Cardani, Emanuele Ferri, Milena Deninno, B. K. Fujikawa, Ettore Fiorini, J. S. Wilson, C. Rusconi, Y. Mei, Stefano Pozzi, L. Marini, C. J. Davis, Andrea Giachero, J. Johnston, Ioan Dafinei, Marco Pallavicini, M. Vignati, A. Giuliani, G. Pessina, H. Z. Huang, D. Q. Adams, Sachinthya Wagaarachchi, K. Alfonso, M. Sakai, T. O'Donnell, Xi-Guang Cao, K. M. Heeger, Luigi Cappelli, M. I. Martínez, S. Zucchelli, Monica Sisti, A. Drobizhev, Richard Creswick, M. A. Franceschi, R. G. Huang, Ezio Previtali, Bradford Welliver, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Caminata A., Adams D., Alduino C., Alfonso K., Avignone F., Azzolini O., Bari G., Bellini F., Benato G., Bersani A., Biassoni M., Branca A., Brofferio C., Bucci C., Campani A., Canonica L., Cao X.-G., Capelli S., Cappelli L., Cardani L., Carniti P., Casali N., Chiesa D., Chott N., Clemenza M., Copello S., Cosmelli C., Cremonesi O., Creswick R., Cushman J., D'Addabbo A., D'Aguanno D., Dafinei I., Davis C., Dell'Oro S., Deninno M., Di Domizio S., Dompe V., Drobizhev A., Fang D.-Q., Fantini G., Faverzani M., Ferri E., Ferroni F., Fiorini E., Franceschi M.A., Freedman S., Fujikawa B., Giachero A., Gironi L., Giuliani A., Gorla P., Gotti C., Gutierrez T., Han K., Heeger K., Hennings-Yeomans R., Huang R., Huang H.Z., Johnston J., Keppel G., Kolomensky Y., Leder A., Ligi C., Ma Y.-G., Marini L., Martinez M., Maruyama R., Mei Y., Moggi N., Morganti S., Napolitano T., Nastasi M., Nones C., Norman E., Novati V., Nucciotti A., Nutini I., O'Donnell T., Ouellet J., Pagliarone C., Pallavicini M., Pattavina L., Pavan M., Pessina G., Pettinacci V., Pira C., Pirro S., Pozzi S., Previtali E., Puiu A., Rosenfeld C., Rusconi C., Sakai M., Sangiorgio S., Schmidt B., Scielzo N., Singh V., Sisti M., Speller D., Taffarello L., Terranova F., Tomei C., Vignati M., Wagaarachchi S., Wang B., Welliver B., Wilson J., Wilson K., Winslow L., Wise T., Zanotti L., Zimmermann S., Zucchelli S., Caminata, A, Adams, D, Alduino, C, Alfonso, K, Avignone, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Bersani, A, Biassoni, M, Branca, A, Brofferio, C, Bucci, C, Campani, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Chiesa, D, Chott, N, Clemenza, M, Copello, S, Cosmelli, C, Cremonesi, O, Creswick, R, Cushman, J, D’Addabbo, A, D’Aguanno, D, Dafinei, I, Davis, C, Dell’Oro, S, Deninno, M, Di Domizio, S, Dompè, V, Drobizhev, A, Fang, D, Fantini, G, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fujikawa, B, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Heeger, K, Hennings-Yeomans, R, Huang, R, Huang, H, Johnston, J, Keppel, G, Kolomensky, Y, Leder, A, Ligi, C, Ma, Y, Marini, L, Martinez, M, Maruyama, R, Mei, Y, Moggi, N, Morganti, S, Napolitano, T, Nastasi, M, Nones, C, Norman, E, Novati, V, Nucciotti, A, Nutini, I, O’Donnell, T, Ouellet, J, Pagliarone, C, Pallavicini, M, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Schmidt, B, Scielzo, N, Singh, V, Sisti, M, Speller, D, Taffarello, L, Terranova, F, Tomei, C, Vignati, M, Wagaarachchi, S, Wang, B, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Wise, T, Zanotti, L, Zimmermann, S, Zucchelli, S, Center for Neutrino Physics, and Département de Physique des Particules (ex SPP) (DPhP)
- Subjects
lcsh:QC793-793.5 ,CUORE ,Majorana Neutrino ,Neutrinoless double beta decay ,lower limit ,energy resolution ,General Physics and Astronomy ,bolometer: crystal ,01 natural sciences ,7. Clean energy ,Lower limit ,neutrinoless double beta decay ,law.invention ,Nuclear physics ,Effective energy ,double-beta decay: (0neutrino) ,Observatory ,law ,Double beta decay ,0103 physical sciences ,talk: Kolymbari 2018/07/04 ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,tellurium: lifetime ,structure ,010306 general physics ,Physics ,010308 nuclear & particles physics ,background ,lcsh:Elementary particle physics ,Bolometer ,neutrino: Majorana: mass ,observatory ,Full width at half maximum ,experimental results - Abstract
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay that has been able to reach the 1-ton scale. The detector consists of an array of 988 TeO 2 crystals arranged in a cylindrical compact structure of 19 towers, each of them made of 52 crystals. The construction of the experiment was completed in August 2016 and the data taking started in spring 2017 after a period of commissioning and tests. In this work we present the neutrinoless double beta decay results of CUORE from examining a total TeO 2 exposure of 86.3 kg yr , characterized by an effective energy resolution of 7.7 keV FWHM and a background in the region of interest of 0.014 counts / ( keV kg yr ) . In this physics run, CUORE placed a lower limit on the decay half-life of neutrinoless double beta decay of 130 Te >, 1.3 ·, 10 25 yr (90% C.L.). Moreover, an analysis of the background of the experiment is presented as well as the measurement of the 130 Te 2 &nu, &beta, decay with a resulting half-life of T 1 / 2 2 &nu, = [ 7.9 ±, 0.1 ( stat . ) ±, 0.2 ( syst . ) ] ×, 10 20 yr which is the most precise measurement of the half-life and compatible with previous results.
- Published
- 2018
- Full Text
- View/download PDF
40. First Result on the Neutrinoless Double- β Decay of Se82 with CUPID-0
- Author
-
A. D'Addabbo, G. Keppel, M. Beretta, K. Schäffner, Alexandre Giuliani, S. Pirro, L. Gironi, S. S. Nagorny, Massimiliano Clemenza, P. Gorla, F. Ferroni, C. Tomei, M. Pavan, Paolo Carniti, L. Marini, Claudio Gotti, M. T. Barrera, Oliviero Cremonesi, C. Bucci, Miriam Lucio Martinez, C. Nones, Jeffrey W. Beeman, A. Puiu, V. Palmieri, C. Brofferio, Stefano Nisi, Massimiliano Nastasi, Simone Capelli, S. Di Domizio, Laura Cardani, V. Pettinacci, M. Biassoni, Stefano Pozzi, M. Vignati, S. Morganti, N. Casali, A. S. Zolotarova, Lucia Canonica, F. Reindl, O. Azzolini, C. Rusconi, L. Pagnanini, F. Bellini, Marco Pallavicini, G. Pessina, D. Orlandi, L. Pattavina, Angelo Cruciani, Ezio Previtali, Lorenzo Cassina, and Ioan Dafinei
- Subjects
Physics ,010308 nuclear & particles physics ,Large array ,General Physics and Astronomy ,01 natural sciences ,Particle identification ,Lower limit ,Nuclear physics ,MAJORANA ,Double beta decay ,0103 physical sciences ,Scintillation counter ,Neutrino ,010306 general physics ,α particles - Abstract
We report the result of the search for neutrinoless double beta decay of Se82 obtained with CUPID-0, the first large array of scintillating ZnSe82 cryogenic calorimeters implementing particle identification. We observe no signal in a 1.83 kg yr Se82 exposure, and we set the most stringent lower limit on the 0νββ Se82 half-life T1/20ν>2.4×1024 yr (90% credible interval), which corresponds to an effective Majorana neutrino mass mββ
- Published
- 2018
- Full Text
- View/download PDF
41. CUPID-0: the first array of enriched scintillating bolometers for 0 $$\nu \beta \beta $$ ν β β decay investigations
- Author
-
Massimiliano Clemenza, O. Azzolini, S. Di Domizio, Laura Cardani, Stefano Pozzi, S. Pirro, C. Brofferio, Massimiliano Nastasi, L. Canonica, V. Palmieri, M. Vignati, C. Bucci, Miriam Lucio Martinez, N. Casali, C. Rusconi, M. Biassoni, G. Keppel, I. Dafinei, Jeffrey W. Beeman, L. Gironi, Stefano Nisi, M. Pavan, F. Bellini, L. Pattavina, A. Cruciani, A. S. Zolotarova, M. Beretta, C. Nones, A. Puiu, P. Gorla, F. Ferroni, C. Tomei, A. Giuliani, F. Reindl, D. Orlandi, Lorenzo Cassina, Marco Pallavicini, K. Schäffner, G. Pessina, Oliviero Cremonesi, Claudio Gotti, M. T. Barrera, L. Pagnanini, Simone Capelli, Paolo Carniti, A. D'Addabbo, S. Morganti, Ezio Previtali, V. Pettinacci, and S. S. Nagorny
- Subjects
Physics ,Physics and Astronomy (miscellaneous) ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Bolometer ,Large array ,Detector ,Cryogenics ,01 natural sciences ,law.invention ,Nuclear physics ,law ,0103 physical sciences ,Background suppression ,Scintillation counter ,High Energy Physics::Experiment ,Production (computer science) ,010306 general physics ,Engineering (miscellaneous) - Abstract
The CUPID-0 detector hosted at the Laboratori Nazionali del Gran Sasso, Italy, is the first large array of enriched scintillating cryogenic detectors for the investigation of $$^{82}$$ Se neutrinoless double-beta decay ( $$0\nu \beta \beta $$ ). CUPID-0 aims at measuring a background index in the region of interest (RoI) for $$0\nu \beta \beta $$ at the level of 10 $$^{-3}$$ counts/(keV kg years), the lowest value ever measured using cryogenic detectors. CUPID-0 operates an array of Zn $$^{82}$$ Se scintillating bolometers coupled with bolometric light detectors, with a state of the art technology for background suppression and thorough protocols and procedures for the detector preparation and construction. In this paper, the different phases of the detector design and construction will be presented, from the material selection (for the absorber production) to the new and innovative detector structure. The successful construction of the detector lead to promising preliminary detector performance which is discussed here.
- Published
- 2018
- Full Text
- View/download PDF
42. First Results from CUORE: A Search for Lepton Number Violation via 0νββ Decay of Te130
- Author
-
R. Gaigher, Massimiliano Clemenza, Carlo Cosmelli, Marisa Pedretti, M. M. Deninno, C. Nones, F. Rimondi, R. Cereseto, I. Dafinei, C. Brofferio, G. Pessina, K. Wilson, Davide Chiesa, A. Caminata, Ezio Previtali, Marco Pallavicini, Jonathan Ouellet, Y. G. Ma, G. Bari, B. Welliver, C. Crescentini, H. Z. Huang, Jeffrey W. Beeman, M. Capodiferro, N. D. Scielzo, G. Keppel, K. E. Lim, E. V. Hansen, A. Bersani, Lucia Canonica, Stefano Dell'Oro, J. Schmidt, L. Ioannucci, S. Di Domizio, V. Pettinacci, F. Bellini, X. Liu, N. Casali, D. D'Aguanno, L. Gladstone, F. Bragazzi, D. Schaeffer, A. Giuliani, M. Guerzoni, P. J. Mosteiro, J. Wallig, C. Maiano, C. Zarra, Laura Cardani, I. C. Bandac, S. S. Nagorny, M. Pavan, R. J. Creswick, N. Chott, B. K. Fujikawa, C. Rusconi, R. Hennings-Yeomans, S. L. Wagaarachchi, Eric B. Norman, C. Pagliarone, M. Vignati, B. X. Zhu, C. Martinez Amaya, C. Arnaboldi, Lindley Winslow, R. W. Kadel, Stefano Zucchelli, S. Zimmermann, K. Alfonso, F. Reindl, M. L. Di Vacri, M. Maino, C. Rossi, M. Faverzani, M. Iannone, C. Bucci, T. D. Gutierrez, Miriam Lucio Martinez, Irene Nutini, Vladimir Datskov, B. S. Wang, G. Ventura, L. Tatananni, A. Chiarini, F. Stivanello, S. Copello, T. I. Banks, Paolo Carniti, C. Bulfon, M. Balata, L. Pattavina, C. Salvioni, L. Zanotti, Jeremy S. Cushman, L. Gironi, G. Piperno, M. Tenconi, F. T. Avignone, F. Orio, Claudio Gotti, M. Cariello, L. Taffarello, B. Schmidt, V. Novati, Virendra Singh, Oliviero Cremonesi, J. Goett, Guimin Zhang, Y. Mei, C. Pira, M. Tessaro, E. Andreotti, O. Azzolini, L. Di Paolo, A. D'Addabbo, Larissa M. Ejzak, M. Sakai, Silvia Capelli, S. Pirro, Xi-Guang Cao, Massimiliano Nastasi, Carlo Ligi, M. Barucci, D. Biare, K. M. Heeger, M. Carrettoni, C. Rosenfeld, P. Gorla, F. Ferroni, C. Tomei, A. Bryant, Emanuele Ferri, Eugene E. Haller, G. Ceruti, C. J. Davis, A. Camacho, L. Kogler, S. Morganti, F. Terranova, S. Pozzi, E. Olivieri, James R. Wilson, E. Fiorini, A. Pelosi, Alan R. Smith, Ke Han, A. Branca, Reina H. Maruyama, N. Moggi, H. W. Wang, Stuart J. Freedman, T. O'Donnell, A. Leder, L. Risegari, Samuele Sangiorgio, Stefano Nisi, T. Wise, A. Nucciotti, M. Sisti, C. Alduino, D. Santone, Yu. G. Kolomensky, Luigi Cappelli, F. Alessandria, R. Pedrotta, D. Conventi, L. Marini, Kevin Hickerson, C. Guandalini, E. Sala, V. Palmieri, A. Giachero, T. Napolitano, D. Q. Fang, M. Biassoni, A. Buccheri, M. Olcese, F. Del Corso, R. Faccini, Giovanni Benato, L. Cassina, A. Drobizhev, D. Orlandi, and M. A. Franceschi
- Subjects
Physics ,Particle physics ,010308 nuclear & particles physics ,Bolometer ,Statistical sensitivity ,General Physics and Astronomy ,01 natural sciences ,Lepton number ,law.invention ,MAJORANA ,Full width at half maximum ,CUORE ,law ,Double beta decay ,0103 physical sciences ,Neutrino ,010306 general physics - Abstract
The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first time to a high-sensitivity search for a lepton-number-violating process: ^{130}Te neutrinoless double-beta decay. Examining a total TeO_{2} exposure of 86.3 kg yr, characterized by an effective energy resolution of (7.7±0.5) keV FWHM and a background in the region of interest of (0.014±0.002) counts/(keV kg yr), we find no evidence for neutrinoless double-beta decay. Including systematic uncertainties, we place a lower limit on the decay half-life of T_{1/2}^{0ν}(^{130}Te)>1.3×10^{25} yr (90% C.L.); the median statistical sensitivity of this search is 7.0×10^{24} yr. Combining this result with those of two earlier experiments, Cuoricino and CUORE-0, we find T_{1/2}^{0ν}(^{130}Te)>1.5×10^{25} yr (90% C.L.), which is the most stringent limit to date on this decay. Interpreting this result as a limit on the effective Majorana neutrino mass, we find m_{ββ}
- Published
- 2018
- Full Text
- View/download PDF
43. Design and Fabrication of the Second-Generation KID-Based Light Detectors of CALDER
- Author
-
Carlo Cosmelli, Marco Castellano, C. Tomei, Angelo Cruciani, S. Di Domizio, I. Colantoni, Laura Cardani, M. Vignati, A. D'Addabbo, M. I. Martínez, N. Casali, and F. Bellini
- Subjects
Materials science ,Fabrication ,Reactive sputtering ,Titanium nitride ,01 natural sciences ,7. Clean energy ,Sputtering ,Atomic and Molecular Physics ,0103 physical sciences ,Deep reactive-ion etching ,General Materials Science ,Wafer ,Thin film ,010306 general physics ,Kinetic inductance detectors ,Atomic and Molecular Physics, and Optics ,Materials Science (all) ,Condensed Matter Physics ,010308 nuclear & particles physics ,business.industry ,Sputter deposition ,Resist ,Optoelectronics ,and Optics ,business ,Electron-beam lithography - Abstract
The goal of the cryogenic wide-area light detectors with excellent resolution project is the development of light detectors with large active area and noise energy resolution smaller than 20 eV RMS using phonon-mediated kinetic inductance detectors (KIDs). The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double readout of the light and the heat released by particles interacting in the bolometers. In this work we present the fabrication process, starting from the silicon wafer arriving to the single chip. In the first part of the project, we designed and fabricated KID detectors using aluminum. Detectors are designed by means of state-of-the-art software for electromagnetic analysis (SONNET). The Al thin films (40 nm) are evaporated on high-quality, high-resistivity (> 10 kΩ cm) Si(100) substrates using an electron beam evaporator in a HV chamber. Detectors are patterned in direct-write mode, using electron beam lithography (EBL), positive tone resist poly-methyl methacrylate and lift-off process. Finally, the chip is diced into 20 × 20 mm2 chips and assembled in a holder OFHC (oxygen-free high conductivity) copper using PTFE support. To increase the energy resolution of our detectors, we are changing the superconductor to sub-stoichiometric TiN (TiNx) deposited by means of DC magnetron sputtering. We are optimizing its deposition by means of DC magnetron reactive sputtering. For this kind of material, the fabrication process is subtractive and consists of EBL patterning through negative tone resist AR-N 7700 and deep reactive ion etching. Critical temperature of TiNx samples was measured in a dedicated cryostat.
- Published
- 2018
44. Study of Rare Nuclear Processes with CUORE
- Author
-
C. Pira, L. Canonica, L. Marini, T. Wise, L. Taffarello, C. Pagliarone, Vasundhara Singh, A. Bersani, B. Schmidt, B. S. Wang, O. Azzolini, Carlo Cosmelli, L. Gladstone, H. Z. Huang, G. Keppel, K. E. Lim, C. Brofferio, Davide Chiesa, C. Rusconi, A. Drobizhev, R. J. Creswick, M. Faverzani, Oliviero Cremonesi, M. M. Deninno, M. A. Franceschi, Marco Pallavicini, L. Pattavina, L. Gironi, F. Bellini, F. T. Avignone, Jeremy S. Cushman, G. Pessina, M. Pavan, C. Rosenfeld, S. Pirro, Nicholas Scielzo, P. Gorla, F. Ferroni, C. Tomei, Emanuele Ferri, C. J. Davis, A. Camacho, James R. Wilson, Giovanni Benato, C. Bucci, T. D. Gutierrez, H. W. Wang, T. O'Donnell, Monica Sisti, V. Palmieri, S. Di Domizio, D. Q. Fang, N. Casali, S. Zucchelli, Eric B. Norman, Laura Cardani, B. K. Fujikawa, Stefano Pozzi, T. Napolitano, N. Moggi, Silvia Capelli, F. Reindl, M. Vignati, Massimiliano Nastasi, V. Novati, M. Biassoni, C. Nones, Samuele Sangiorgio, A. Nucciotti, C. Alduino, K. Wilson, Ettore Fiorini, Jonathan Ouellet, G. Bari, Andrea Giachero, K. Alfonso, M. I. Martínez, M. L. Di Vacri, Lorenzo Cassina, Yu. G. Kolomensky, D. Santone, S. Zimmermann, Ioan Dafinei, S. Copello, L. Zanotti, Paolo Carniti, Claudio Gotti, Stefano Dell'Oro, M. Clemenza, A. Giuliani, N. Chott, S. L. Wagaarachchi, D. D'Aguanno, S. Morganti, S. S. Nagorny, Lindley Winslow, L. Cappelli, A. Leder, Irene Nutini, Y. Mei, V. Dompè, Yu-Gang Ma, A. Caminata, M. Sakai, Ezio Previtali, R. Hennings-Yeomans, Xi-Guang Cao, A. D'Addabbo, B. Welliver, K. M. Heeger, Carlo Ligi, J. Schmidt, Ke Han, A. Branca, Reina H. Maruyama, Stuart J. Freedman, F. Terranova, Guimin Zhang, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, CUORE, Alduino, C., Alfonso, K., Avignone, F.T., Azzolini, O., Bari, G., Bellini, F., Benato, G., Bersani, A., Biassoni, M., Branca, A., Brofferio, C., Bucci, C., Camacho, A., Caminata, A., Canonica, L., Cao, X.G., Capelli, S., Cappelli, L., Cardani, L., Carniti, P., Casali, N., Cassina, L., Chiesa, D., Chott, N., Clemenza, M., Copello, S., Cosmelli, C., Cremonesi, O., Creswick, R.J., Cushman, J.S., D'Addabbo, A., D'Aguanno, D., Dafinei, I., Davis, C.J., Dell'Oro, S., Deninno, M.M., Di Domizio, S., Di Vacri, M.L., Dompe, V., Drobizhev, A., Fang, D.Q., Faverzani, M., Ferri, E., Ferroni, F., Fiorini, E., Franceschi, M.A., Freedman, S.J., Fujikawa, B.K., Giachero, A., Gironi, L., Giuliani, A., Gladstone, L., Gorla, P., Gotti, C., Gutierrez, T.D., Han, K., Heeger, K.M., Hennings-Yeomans, R., Huang, H.Z., Keppel, G., Kolomensky, Yu.G., Leder, A., Ligi, C., Lim, K.E., Ma, Y.G., Marini, L., Martinez, M., Maruyama, R.H., Mei, Y., Moggi, N., Morganti, S., Nagorny, S.S., Napolitano, T., Nastasi, M., Nones, C., Norman, E.B., Novati, V., Nucciotti, A., Nutini, I., O'Donnell, T., Ouellet, J.L., Pagliarone, C.E., Pallavicini, M., Palmieri, V., Pattavina, L., Pavan, M., Pessina, G., Pira, C., Pirro, S., Pozzi, S., Previtali, E., Reindl, F., Rosenfeld, C., Rusconi, C., Sakai, M., Sangiorgio, S., Santone, D., Schmidt, B., Schmidt, J., Scielzo, N.D., Singh, V., Sisti, M., Taffarello, L., Terranova, F., Tomei, C., Vignati, M., Wagaarachchi, S.L., Wang, B.S., Wang, H.W., Welliver, B., Wilson, J., Wilson, K., Winslow, L.A., Wise, T., Zanotti, L., Zhang, G.Q., Zimmermann, S., Zucchelli, S., Centre de Sciences Nucléaires et de Sciences de la Matière ( CSNSM ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Département de Physique des Particules (ex SPP) ( DPP ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Alduino, C, Alfonso, K, Avignone, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Bersani, A, Biassoni, M, Branca, A, Brofferio, C, Bucci, C, Camacho, A, Caminata, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cassina, L, Chiesa, D, Chott, N, Clemenza, M, Copello, S, Cosmelli, C, Cremonesi, O, Creswick, R, Cushman, J, D’Addabbo, A, D’Aguanno, D, Dafinei, I, Davis, C, Dell’Oro, S, Deninno, M, Di Domizio, S, Di Vacri, M, Dompè, V, Drobizhev, A, Fang, D, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fujikawa, B, Giachero, A, Gironi, L, Giuliani, A, Gladstone, L, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Heeger, K, Hennings-Yeomans, R, Huang, H, Keppel, G, Kolomensky, Y, Leder, A, Ligi, C, Lim, K, Ma, Y, Marini, L, Martinez, M, Maruyama, R, Mei, Y, Moggi, N, Morganti, S, Nagorny, S, Napolitano, T, Nastasi, M, Nones, C, Norman, E, Novati, V, Nucciotti, A, Nutini, I, O’Donnell, T, Ouellet, J, Pagliarone, C, Pallavicini, M, Palmieri, V, Pattavina, L, Pavan, M, Pessina, G, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Reindl, F, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Santone, D, Schmidt, B, Schmidt, J, Scielzo, N, Singh, V, Sisti, M, Taffarello, L, Terranova, F, Tomei, C, Vignati, M, Wagaarachchi, S, Wang, B, Wang, H, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Wise, T, Zanotti, L, Zhang, G, Zimmermann, S, Zucchelli, S, and Département de Physique des Particules (ex SPP) (DPhP)
- Subjects
Second-order weak decay ,Particle physics ,CUORE ,Double beta decay ,Low-temperature detectors ,Rare events searches ,Second-order weak decays ,Atomic and Molecular Physics, and Optics ,Nuclear and High Energy Physics ,Astronomy and Astrophysics ,Physics - Instrumentation and Detectors ,Atomic and Molecular Physics, and Optic ,rare events searches ,FOS: Physical sciences ,double beta decay ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,Low-temperature detector ,low-temperature detectors ,23.40.-s ,07.57.Kp ,second-order weak decays ,Atomic and Molecular Physics ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex] ,Detector array ,010306 general physics ,Nuclear Experiment ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear and High Energy Physic ,Physics ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Neutrino ,and Optics ,Rare events searche ,Tellurium compounds ,FIS/04 - FISICA NUCLEARE E SUBNUCLEARE ,Radioactive decay ,07.20.Mc - Abstract
TeO2 bolometers have been used for many years to search for neutrinoless double beta decay in 130-Te. CUORE, a tonne-scale TeO2 detector array, recently published the most sensitive limit on the half-life, $T_{1/2}^{0��} > 1.5 \times 10^{25}\,$yr, which corresponds to an upper bound of $140-400$~meV on the effective Majorana mass of the neutrino. While it makes CUORE a world-leading experiment looking for neutrinoless double beta decay, it is not the only study that CUORE will contribute to in the field of nuclear and particle physics. As already done over the years with many small-scale experiments, CUORE will investigate both rare decays (such as the two-neutrino double beta decay of 130-Te and the hypothesized electron capture in 123-Te), and rare processes (e.g., dark matter and axion interactions). This paper describes some of the achievements of past experiments that used TeO2 bolometers, and perspectives for CUORE., 36 pages, 13 figures, sumbitted to IJMPA Special Issue "Results and Developments in the investigation of rare nuclear decays and processes"
- Published
- 2018
- Full Text
- View/download PDF
45. Analysis of cryogenic calorimeters with light and heat read-out for double beta decay searches
- Author
-
Lorenzo Cassina, Paolo Carniti, S. Di Domizio, E. Bossio, Marco Pallavicini, Laura Cardani, Claudio Gotti, Stefano Pozzi, G. Pessina, M. Pavan, F. Bellini, M. I. Martínez, A. Giuliani, M. Vignati, S. Pirro, C. Brofferio, I. Dafinei, Silvia Capelli, C. Rusconi, Massimiliano Nastasi, K. Schäffner, M. Clemenza, S. Morganti, P. Gorla, F. Ferroni, C. Tomei, L. Pattavina, L. Pagnanini, V. Pettinacci, C. Nones, O. Azzolini, A. Puiu, L. Canonica, A. D'Addabbo, Jeffrey W. Beeman, Angelo Cruciani, Ezio Previtali, V. Palmieri, Stefano Nisi, M. Beretta, M. Biassoni, L. Gironi, S.S. Nagorny, D. Orlandi, C. Bucci, A. S. Zolotarova, G. Keppel, M. T. Barrera, Oliviero Cremonesi, N. Casali, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Azzolini, O, Barrera, M, Beeman, J, Bellini, F, Beretta, M, Biassoni, M, Bossio, E, Brofferio, C, Bucci, C, Canonica, L, Capelli, S, Cardani, L, Carniti, P, Casali, N, Cassina, L, Clemenza, M, Cremonesi, O, Cruciani, A, D’Addabbo, A, Dafinei, I, Domizio, S, Ferroni, F, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Keppel, G, Martinez, M, Morganti, S, Nagorny, S, Nastasi, M, Nisi, S, Nones, C, Orlandi, D, Pagnanini, L, Pallavicini, M, Palmieri, V, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Rusconi, C, Schäffner, K, Tomei, C, Vignati, M, and Zolotarova, A
- Subjects
Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,Regular Article - Experimental Physics ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,lcsh:Astrophysics ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Atomic ,Nuclear physics ,Particle and Plasma Physics ,Double beta decay ,lcsh:QB460-466 ,0103 physical sciences ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Nuclear ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Engineering (miscellaneous) ,Nuclear Experiment ,Physics ,Scintillation ,Quantum Physics ,010308 nuclear & particles physics ,Detector ,Molecular ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,Physics and Astronomy ,lcsh:QC770-798 ,High Energy Physics::Experiment ,α particles - Abstract
The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dominated by {\alpha} particles, that could be disentangled from double beta decay signals by exploiting the difference in the emission of the scintillation light. CUPID-0, an array of enriched Zn$^{82}$Se scintillating calorimeters, is the first large mass demonstrator of this technology. The detector started data-taking in 2017 at the Laboratori Nazionali del Gran Sasso with the aim of proving that dual read-out of light and heat allows for an efficient suppression of the {\alpha} background. In this paper we describe the software tools we developed for the analysis of scintillating calorimeters and we demonstrate that this technology allows to reach an unprecedented background for cryogenic calorimeters., Comment: 11 pages, 9 figures
- Published
- 2018
- Full Text
- View/download PDF
46. Neutrinoless Double Beta Decay Overview
- Author
-
Laura Cardani
- Subjects
Physics ,Particle physics ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,QC1-999 ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,Symmetry (physics) ,Standard Model ,Double beta decay ,0103 physical sciences ,High Energy Physics::Experiment ,Sensitivity (control systems) ,Neutrino ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment - Abstract
Neutrinoless Double Beta Decay is a hypothesised nuclear process in which two neutrons simultaneously decay into protons with no neutrino emission. The prized observation of this decay would point to the existence of a process that violates a fundamental symmetry of the Standard Model of Particle Physics, and would allow to establish the nature of neutrinos. Today, the lower limits on the half-life of this process exceed 10^{25}25-10^{26}26 yr. I will review the current status of the searches for Double Beta Decay and the perspectives to enhance the experimental sensitivity in the next years.
- Published
- 2018
- Full Text
- View/download PDF
47. Initial performance of the CUORE detector
- Author
-
D. Santone, L. Zanotti, Carlo Ligi, Ettore Fiorini, L. Gladstone, N. Chott, K. Wilson, H. Z. Huang, Lorenzo Cassina, T. Wise, C. Pagliarone, M. Faverzani, G. Keppel, K. E. Lim, N. D. Scielzo, Stuart Freedman, R. J. Creswick, A. Drobizhev, Jonathan Ouellet, G. Bari, K. Alfonso, M. L. Di Vacri, Davide Chiesa, L. Canonica, Y. Mei, M. A. Franceschi, B. Schmidt, L. Marini, L. Taffarello, Monica Sisti, H. W. Wang, L. Gironi, F. T. Avignone, T. O'Donnell, B. S. Wang, A. Bersani, A. Giuliani, Virendra Singh, O. Azzolini, S. Morganti, M. Sakai, S. Copello, M. Pavan, Y. G. Ma, M. M. Deninno, S. S. Nagorny, Paolo Carniti, Xi-Guang Cao, K. M. Heeger, S. Zimmermann, C. Pira, I. Dafinei, John Wilson, Claudio Gotti, F. Bellini, V. Palmieri, N. Moggi, C. Rosenfeld, V. Novati, Silvia Capelli, Samuele Sangiorgio, S. L. Wagaarachchi, Massimiliano Nastasi, S. Zucchelli, A. Nucciotti, Lindley Winslow, Eric B. Norman, C. Alduino, Oliviero Cremonesi, A. Giachero, A. D'Addabbo, Guoqiang Zhang, T. Napolitano, P. Gorla, F. Ferroni, C. Tomei, Stefano Dell'Oro, S. Pirro, C. Bucci, T. D. Gutierrez, Miriam Lucio Martinez, D. Q. Fang, Yu. G. Kolomensky, Luigi Cappelli, Jeremy S. Cushman, Emanuele Ferri, M. Biassoni, N. Casali, D. D'Aguanno, C. J. Davis, F. Reindl, Ke Han, A. Branca, Reina H. Maruyama, L. Pattavina, Giovanni Benato, Irene Nutini, A. Camacho, J. Schmidt, C. Nones, R. Hennings-Yeomans, S. Di Domizio, F. Terranova, A. Caminata, Ezio Previtali, B. Welliver, Laura Cardani, Marco Pallavicini, B. K. Fujikawa, Massimiliano Clemenza, Stefano Pozzi, Carlo Cosmelli, G. Pessina, M. Vignati, C. Brofferio, C. Rusconi, A. Leder, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Département de Physique des Particules (ex SPP) (DPhP), Cushman, J, Alduino, C, Alfonso, K, Avignone, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Bersani, A, Biassoni, M, Branca, A, Brofferio, C, Bucci, C, Camacho, A, Caminata, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cassina, L, Chiesa, D, Chott, N, Clemenza, M, Copello, S, Cosmelli, C, Cremonesi, O, Creswick, R, D'Addabbo, A, D'Aguanno, D, Dafinei, I, Davis, C, Dell'Oro, S, Deninno, M, Domizio, S, Vacri, M, Drobizhev, A, Fang, D, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fujikawa, B, Giachero, A, Gironi, L, Giuliani, A, Gladstone, L, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Heeger, K, Hennings-Yeomans, R, Huang, H, Keppel, G, Kolomensky, Y, Leder, A, Ligi, C, Lim, K, Ma, Y, Marini, L, Martinez, M, Maruyama, R, Mei, Y, Moggi, N, Morganti, S, Nagorny, S, Napolitano, T, Nastasi, M, Nones, C, Norman, E, Novati, V, Nucciotti, A, Nutini, I, O'Donnell, T, Ouellet, J, Pagliarone, C, Pallavicini, M, Palmieri, V, Pattavina, L, Pavan, M, Pessina, G, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Reindl, F, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Santone, D, Schmidt, B, Schmidt, J, Scielzo, N, Singh, V, Sisti, M, Taffarello, L, Terranova, F, Tomei, C, Vignati, M, Wagaarachchi, S, Wang, B, Wang, H, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Wise, T, Zanotti, L, Zhang, G, Zimmermann, S, and Zucchelli, S
- Subjects
Cryostat ,History ,Cryogenics ,01 natural sciences ,tellurium: oxygen ,Neutrinoless Double Beta Decay, Cryogenic detector, bolometer ,Education ,law.invention ,Nuclear physics ,CUORE ,double-beta decay: (0neutrino) ,Observatory ,law ,Double beta decay ,0103 physical sciences ,Calibration ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,activity report ,Physics ,010308 nuclear & particles physics ,Detector ,Bolometer ,calibration ,Computer Science Applications ,cryogenics ,tellurium: nuclide ,performance - Abstract
CUORE, the Cryogenic Underground Observatory for Rare Events, is an experiment searching for the neutrinoless double-beta decay of 130Te. The first CUORE dataset was acquired in May and June 2017 and consisted of 10.6 kg-yr of TeO2 exposure, with several days of calibration data before and after the physics dataset. We discuss here the initial performance of the CUORE detector and cryostat in this first dataset.
- Published
- 2017
- Full Text
- View/download PDF
48. First results from the CUORE experiment
- Author
-
M. Faverzani, N. Casali, A. Bersani, C. Nones, Davide Chiesa, Ettore Fiorini, S. L. Wagaarachchi, C. Rosenfeld, K. Wilson, S. S. Nagorny, F. Reindl, C. Bucci, T. D. Gutierrez, Miriam Lucio Martinez, P. Gorla, F. Ferroni, A. Giuliani, C. Tomei, Jonathan Ouellet, Andrea Giachero, Guoqiang Zhang, G. Bari, Emanuele Ferri, Yu. G. Kolomensky, N. Chott, T. Wise, Marco Pallavicini, S. Di Domizio, J. Schmidt, C. J. Davis, A. Camacho, Jeremy S. Cushman, L. Gladstone, H. Z. Huang, Lindley Winslow, S. Morganti, C. Pagliarone, L. Gironi, Laura Cardani, Carlo Cosmelli, L. Taffarello, B. K. Fujikawa, G. Pessina, G. Keppel, K. E. Lim, F. T. Avignone, Monica Sisti, Stefano Pozzi, Carlo Ligi, Giovanni Benato, Ke Han, A. Branca, Reina H. Maruyama, Virendra Singh, K. Alfonso, Stuart J. Freedman, N. Moggi, Lorenzo Cassina, M. L. Di Vacri, V. Palmieri, S. Zucchelli, C. Pira, Samuele Sangiorgio, A. Drobizhev, S. Zimmermann, Eric B. Norman, N. D. Scielzo, M. Vignati, A. Nucciotti, L. Pattavina, B. Schmidt, T. Napolitano, F. Terranova, Stefano Dell'Oro, C. Alduino, R. J. Creswick, B. S. Wang, M. Clemenza, Claudio Gotti, V. Novati, Silvia Capelli, Massimiliano Nastasi, O. Azzolini, C. Brofferio, V. Dompè, M. Biassoni, A. D'Addabbo, Y. Mei, C. Rusconi, I. Dafinei, John Wilson, H. W. Wang, M. Sakai, T. O'Donnell, Xi-Guang Cao, M. A. Franceschi, K. M. Heeger, Oliviero Cremonesi, S. Copello, A. Caminata, Ezio Previtali, Paolo Carniti, B. Welliver, M. M. Deninno, M. Pavan, Y. G. Ma, Irene Nutini, F. Bellini, R. Hennings-Yeomans, L. Cappelli, Stefano Pirro, D. D'Aguanno, D. Q. Fang, L. Canonica, L. Marini, A. Leder, D. Santone, L. Zanotti, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Alduino, C, Alfonso, K, Avignone, F, Azzolini, O, Bari, G, Bellini, F, Benato, G, Bersani, A, Biassoni, M, Branca, A, Brofferio, C, Bucci, C, Camacho, A, Caminata, A, Canonica, L, Cao, X, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cassina, L, Chiesa, D, Chott, N, Clemenza, M, Copello, S, Cosmelli, C, Cremonesi, O, Creswick, R, Cushman, J, D'Addabbo, A, D'Aguanno, D, Dafinei, I, Davis, C, Dell'Oro, S, Deninno, M, Domizio, S, Vacri, M, Dompe, V, Drobizhev, A, Fang, D, Faverzani, M, Ferri, E, Ferroni, F, Fiorini, E, Franceschi, M, Freedman, S, Fujikawa, B, Giachero, A, Gironi, L, Giuliani, A, Gladstone, L, Gorla, P, Gotti, C, Gutierrez, T, Han, K, Heeger, K, Hennings-Yeomans, R, Huang, H, Keppel, G, Kolomensky, Y, Leder, A, Ligi, C, Lim, K, Ma, Y, Marini, L, Martinez, M, Maruyama, R, Mei, Y, Moggi, N, Morganti, S, Nagorny, S, Napolitano, T, Nastasi, M, Nones, C, Norman, E, Novati, V, Nucciotti, A, Nutini, I, O'Donnell, T, Ouellet, J, Pagliarone, C, Pallavicini, M, Palmieri, V, Pattavina, L, Pavan, M, Pessina, G, Pira, C, Pirro, S, Pozzi, S, Previtali, E, Reindl, F, Rosenfeld, C, Rusconi, C, Sakai, M, Sangiorgio, S, Santone, D, Schmidt, B, Schmidt, J, Scielzo, N, Singh, V, Sisti, M, Taffarello, L, Terranova, F, Tomei, C, Vignati, M, Wagaarachchi, S, Wang, B, Wang, H, Welliver, B, Wilson, J, Wilson, K, Winslow, L, Wise, T, Zanotti, L, Zhang, G, Zimmermann, S, Zucchelli, S, and Département de Physique des Particules (ex SPP) (DPhP)
- Subjects
History ,Cryogenic system ,hierarchy ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,030218 nuclear medicine & medical imaging ,Education ,Neutrinoless Double Beta Decay, Cryogenic detector, bolometer ,Combinatorics ,decoupling ,03 medical and health sciences ,0302 clinical medicine ,CUORE ,double-beta decay: (0neutrino) ,bolometer ,Double beta decay ,tellurium ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Physics ,lifetime ,010308 nuclear & particles physics ,temperature ,sensitivity ,Double beta decay - Cryogenic equipment - Majorana neutrino ,Computer Science Applications ,talk: Sudbury 2017/07/24 ,observatory ,cryogenics ,mass: Majorana ,experimental results - Abstract
Author(s): Alduino, C; Alfonso, K; Avignone, FT; Azzolini, O; Bari, G; Bellini, F; Benato, G; Bersani, A; Biassoni, M; Branca, A; Brofferio, C; Bucci, C; Camacho, A; Caminata, A; Canonica, L; Cao, XG; Capelli, S; Cappelli, L; Cardani, L; Carniti, P; Casali, N; Cassina, L; Chiesa, D; Chott, N; Clemenza, M; Copello, S; Cosmelli, C; Cremonesi, O; Creswick, RJ; Cushman, JS; D'Addabbo, A; D'Aguanno, D; Dafinei, I; Davis, CJ; Dell'Oro, S; Deninno, MM; Domizio, SD; Vacri, MLD; Dompe, V; Drobizhev, A; Fang, DQ; Faverzani, M; Ferri, E; Ferroni, F; Fiorini, E; Franceschi, MA; Freedman, SJ; Fujikawa, BK; Giachero, A; Gironi, L; Giuliani, A; Gladstone, L; Gorla, P; Gotti, C; Gutierrez, TD; Han, K; Heeger, KM; Hennings-Yeomans, R; Huang, HZ; Keppel, G; Kolomensky, YG; Leder, A; Ligi, C; Lim, KE; Ma, YG; Marini, L; Martinez, M; Maruyama, RH; Mei, Y; Moggi, N; Morganti, S; Nagorny, SS; Napolitano, T; Nastasi, M; Nones, C; Norman, EB; Novati, V; Nucciotti, A; Nutini, I; O'Donnell, T; Ouellet, JL; Pagliarone, CE; Pallavicini, M; Palmieri, V; Pattavina, L | Abstract: CUORE (Cryogenic Underground Observatory for Rare Events) is a ton-scale experiment aiming to the search of neutrino-less double beta decay in 130Te with a projected sensitivity on the Majorana effective mass close to the inverted hierarchy region. The CUORE detector consists of a segmented array of 988 TeO2 bolometers, organized in 19 towers and operated at a temperature of about 10 mK thanks to a custom cryogenic system which, besides the uncommon scale, observes several constraints from the radio-purity of the materials to the mechanical decoupling of the cooling systems. The successful commissioning of the CUORE cryogenic system has been completed early in 2016 and represents an outstanding achievement by itself. The installation of the detector proceeded along 2016 followed by the cooldown to base temperature at the beginning of 2017. The CUORE detector is now operational and has been taking science data since Spring 2017. With the first ∼3 weeks of collected data, we present here the most stringent constraint on the 130Te half-live for the neutrino-less double beta decay.
- Published
- 2017
- Full Text
- View/download PDF
49. CUPID-0: A Cryogenic Calorimeter with Particle Identification for Double Beta Decay Search
- Author
-
A. D'Addabbo, K. Schaeffner, Oliviero Cremonesi, Lorenzo Cassina, S. Di Domizio, L. Pagnanini, V. Palmieri, Simone Capelli, Laura Cardani, Stefano Pozzi, Massimiliano Clemenza, D. Orlandi, Angelo Cruciani, Ezio Previtali, G. Keppel, M. Vignati, V. Pettinacci, D. R. Artusa, S. Morganti, Stefano Pirro, Stefano Nisi, M. Pavan, M. L. Di Vacri, I. Dafinei, C. Bucci, Miriam Lucio Martinez, C. Brofferio, L. Sinkunaite, Massimiliano Nastasi, M. Maino, Claudio Gotti, Paolo Carniti, L. Gironi, S. S. Nagorny, C. Rusconi, Jeffrey W. Beeman, M. T. Barrera, N. Casali, L. Pattavina, F. Orio, F. Reindl, P. Gorla, F. Ferroni, C. Tomei, O. Azzolini, A. Giuliani, A. Camacho, M. Beretta, M. Biassoni, Lucia Canonica, F. Bellini, A. S. Zolotarova, C. Nones, A. Puiu, Marco Pallavicini, G. Pessina, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Cardani, L, Artusa, D, Azzolini, O, Barrera, M, Beeman, J, Bellini, F, Beretta, M, Biassoni, M, Brofferio, C, Bucci, C, Camacho, A, Canonica, L, Capelli, S, Carniti, P, Casali, N, Cassina, L, Clemenza, M, Cremonesi, O, Cruciani, A, D’Addabbo, A, Dafinei, I, Di Domizio, S, di Vacri, M, Ferroni, F, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Keppel, G, Maino, M, Martinez, M, Morganti, S, Nagorny, S, Nastasi, M, Nisi, S, Nones, C, Orio, F, Orlandi, D, Pagnanini, L, Pallavicini, M, Palmieri, V, Pattavina, L, Pavan, M, Pessina, G, Pettinacci, V, Pirro, S, Pozzi, S, Previtali, E, Puiu, A, Reindl, F, Rusconi, C, Schaeffner, K, Sinkunaite, L, Tomei, C, Vignati, M, and Zolotarova, A
- Subjects
Physics::Instrumentation and Detectors ,double beta decay ,01 natural sciences ,Particle identification ,helium: background ,Nuclear physics ,Physics and Astronomy (all) ,thermal detectors ,Double beta decay ,0103 physical sciences ,Sensitivity (control systems) ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,activity report ,Physics ,Scintillation ,010308 nuclear & particles physics ,Detector ,Resolution (electron density) ,zinc ,neutrino physic ,double-beta decay ,Calorimeter ,calorimeter: cryogenics ,scintillation counter: crystal ,High Energy Physics::Experiment ,selenium: nuclide ,particle identification ,Energy (signal processing) ,FIS/04 - FISICA NUCLEARE E SUBNUCLEARE ,performance - Abstract
International audience; With their excellent energy resolution, efficiency, and intrinsic radio-purity, cryogenic calorimeters are primed for the search of neutrino-less double beta decay (0nDBD). The sensitivity of these devices could be further increased by discriminating the dominant alpha background from the expected beta-like signal. The CUPID-0 collaboration aims at demonstrating that the measurement of the scintillation light produced by the absorber crystals allows for particle identification and, thus, for a complete rejection of the alpha background. The CUPID-0 detector, assembled in 2016 and now in data-taking, consists of 26 Zn$^{82}$ Se scintillating calorimeters for about $2 \times 10^{25}$ 0nDBD emitters. In this contribution we present the preliminary results obtained with the detector and the perspectives for a next generation project.
- Published
- 2017
- Full Text
- View/download PDF
50. Phonon traps reduce the quasiparticle density in superconducting circuits
- Author
-
M. I. Martínez, Laura Cardani, Daria Gusenkova, Lukas Grünhaupt, M. Vignati, Francesco Valenti, Wolfgang Wernsdorfer, Sebastian T. Skacel, Thibault Charpentier, Clement Gouriou, Oliver Sander, Gianluigi Catelani, Ioan Pop, Julian Ferrero, Marc Lagoin, Alexey V. Ustinov, and Fabio Henriques
- Subjects
010302 applied physics ,Physics ,Superconductivity ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,Phonon ,Condensed Matter - Superconductivity ,FOS: Physical sciences ,02 engineering and technology ,Substrate (electronics) ,021001 nanoscience & nanotechnology ,01 natural sciences ,Noise (electronics) ,Kinetic inductance ,Superconductivity (cond-mat.supr-con) ,High impedance ,Resonator ,Condensed Matter::Superconductivity ,0103 physical sciences ,Quasiparticle ,ddc:530 ,0210 nano-technology ,quasiparticles ,phonons ,qubit - Abstract
Out of equilibrium quasiparticles (QPs) are one of the main sources of decoherence in superconducting quantum circuits and one that is particularly detrimental in devices with high kinetic inductance, such as high impedance resonators, qubits, and detectors. Despite significant progress in the understanding of QP dynamics, pinpointing their origin and decreasing their density remain outstanding tasks. The cyclic process of recombination and generation of QPs implies the exchange of phonons between the superconducting thin film and the underlying substrate. Reducing the number of substrate phonons with frequencies exceeding the spectral gap of the superconductor should result in a reduction of QPs. Indeed, we demonstrate that surrounding high impedance resonators made of granular aluminum (grAl) with lower gapped thin film aluminum islands increases the internal quality factors of the resonators in the single photon regime, suppresses the noise, and reduces the rate of observed QP bursts. The aluminum islands are positioned far enough from the resonators to be electromagnetically decoupled, thus not changing the resonator frequency nor the loading. We therefore attribute the improvements observed in grAl resonators to phonon trapping at frequencies close to the spectral gap of aluminum, well below the grAl gap.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.