1. Interaction dust – plasma in Titan's ionosphere: An experimental simulation of aerosols erosion
- Author
-
Olivier Guaitella, Thomas Gautier, Nathalie Ruscassier, Audrey Chatain, Nathalie Carrasco, Ludovic Vettier, IMPEC - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-École polytechnique (X)-Sorbonne Universités-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, PLANETO - LATMOS, Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie des Procédés et Matériaux (LGPM), CentraleSupélec-Université Paris-Saclay, and European Project: 636829,H2020,ERC-2014-STG,PRIMCHEM(2015)
- Subjects
Atmosphere Evolution ,010504 meteorology & atmospheric sciences ,Hydrogen ,Analytical chemistry ,chemistry.chemical_element ,Infrared spectroscopy ,FOS: Physical sciences ,Organic chemistry ,01 natural sciences ,Methane ,Ion ,Atmosphere ,symbols.namesake ,chemistry.chemical_compound ,0103 physical sciences ,Capacitively coupled plasma ,Spectroscopy ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,0105 earth and related environmental sciences ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Earth and Planetary Astrophysics (astro-ph.EP) ,Chemistry ,Astronomy and Astrophysics ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,symbols ,Astrophysics - Instrumentation and Methods for Astrophysics ,Titan (rocket family) ,Titan ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Organic aerosols accumulated in Titan's orange haze start forming in its ionosphere. This upper part of the atmosphere is highly reactive and complex ion chemistry takes place at altitudes from 1200 to 900 km. The ionosphere is a nitrogen plasma with a few percent of methane and hydrogen. Carbon from methane enables the formation of macromolecules with long organic chains, finally leading to the organic aerosols. On the other hand, we suspect that hydrogen and the protonated ions have a different erosive effect on the aerosols. Here we experimentally studied the effect of hydrogen and protonated species on organic aerosols. Analogues of Titan's aerosols were formed in a CCP RF plasma discharge in 95% N2 and 5% CH4. Thereafter, the aerosols were exposed to a DC plasma in 99% N2 and 1% H2. Samples were analysed by scanning electron microscopy and in situ infrared transmission spectroscopy. Two pellet techniques - KBr pressed pellets and thin metallic grids - were compared to confirm that modifications seen are not due to the material used to make the pellet. We observed that the spherical aerosols of ~500 nm in diameter were eroded under N2-H2 plasma exposure, with the formation of holes of ~10 nm at their surface. Aerosols were globally removed from the pellet by the plasma. IR spectra showed a faster disappearance of isonitriles and/or carbo-diimides compared to the global band of nitriles. The opposite effect was seen with beta-unsaturated nitriles and/or cyanamides. Double bonds as C=C and C=N were more affected than amines and C-H bonds. N-H and C-H absorption bands kept a similar ratio in intensity and their shape did not vary. Therefore, it seems that carbon and hydrogen play opposite roles in Titan's ionosphere: the carbon from methane lead to organic growth while hydrogen and protonated species erode the aerosols and react preferentially with unsaturated chemical functions., Comment: 30 pages, 16 figures
- Published
- 2020
- Full Text
- View/download PDF