1. Present-day Mars' seismicity predicted from 3-D thermal evolution models of interior dynamics
- Author
-
Matthias Grott, P. H. Lognonné, Ana-Catalina Plesa, Nicola Tosi, Matthew P. Golombek, Renee Weber, Taichi Kawamura, Doris Breuer, and Martin Knapmeyer
- Subjects
010504 meteorology & atmospheric sciences ,Dynamics (mechanics) ,interior dynamics ,Mars ,Geophysics ,Mars Exploration Program ,Present day ,Induced seismicity ,01 natural sciences ,550 Geowissenschaften ,0103 physical sciences ,Thermal ,ddc:550 ,General Earth and Planetary Sciences ,seismicity ,thermal evolution ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences ,InSight - Abstract
©2018. American Geophysical Union, The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport mission, to be launched in 2018, will perform a comprehensive geophysical investigation of Mars in situ. The Seismic Experiment for Interior Structure package aims to detect global and regional seismic events and in turn offer constraints on core size, crustal thickness, and core, mantle, and crustal composition. In this study, we estimate the present‐day amount and distribution of seismicity using 3‐D numerical thermal evolution models of Mars, taking into account contributions from convective stresses as well as from stresses associated with cooling and planetary contraction. Defining the seismogenic lithosphere by an isotherm and assuming two end‐member cases of 573 K and the 1073 K, we determine the seismogenic lithosphere thickness. Assuming a seismic efficiency between 0.025 and 1, this thickness is used to estimate the total annual seismic moment budget, and our models show values between 5.7 × 1016 and 3.9 × 1019 Nm.
- Published
- 2018