1. Ion acceleration in non-equilibrium plasmas driven by fast drifting electron
- Author
-
G. Castroa (a, F. Di Bartolo (c), N. Gambino (a, D. Mascali (a, e, F.P. Romano (a, A. Anzalone(a), L. Celona(a), S. Gammino(a), R. Di Giugno(a, D. Lanaia(a), R. Miracoli(a, T. Serafino(e), and S. Tudisco(a
- Subjects
Physics ,Ion beam ,Waves in plasmas ,General Physics and Astronomy ,Surfaces and Interfaces ,General Chemistry ,Plasma ,Electron ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,Surfaces, Coatings and Films ,Ion ,Magnetic field ,Ion implantation ,ddc:670 ,Physics::Plasma Physics ,Electric field ,0103 physical sciences ,Electrostatic Bernstein waves ,Plasma heating ,Plasma vortex ,Langmuir probe measurements ,Multilayer plasma structure ,Laser plasma ,Atomic physics ,010306 general physics - Abstract
We hereby present results on ion acceleration mechanisms in non equilibrium plasmas generated by microwaves or high intensity laser pulses. Experiments point out that in magnetized plasmas X–B conversion takes place for under resonance values of the magnetic field, i.e. an electromagnetic mode is converted into an electrostatic wave. The strong self-generated electric field, of the order of 10 7 V/m, causes a E × B drift which accelerates both ions and electrons, as it is evident by localized sputtering in the plasma chamber. These fields are similar (in magnitude) to the ones obtainable in laser generated plasmas at intensity of 10 12 W/cm 2 . In this latter case, we observe that the acceleration mechanism is driven by electrons drifting much faster than plasma bulk, thus generating an extremely strong electric field ∼10 7 V/m. The two experiments confirm that ions acceleration at low energy is possible with table-top devices and following complementary techniques: i.e. by using microwave-driven (producing CW beams) plasmas, or non-equilibrium laser-driven plasmas (producing pulsed beams). Possible applications involve ion implantation, materials surface modifications, ion beam assisted lithography, etc.
- Published
- 2012
- Full Text
- View/download PDF