1. Photoacoustic imaging beyond the acoustic diffraction-limit with dynamic speckle illumination and sparse joint support recovery
- Author
-
Sylvain Gigan, Eliel Hojman, Emmanuel Bossy, Thomas Chaigne, Oren Solomon, Ori Katz, Yonina C. Eldar, Department of Applied Physics, Hebrew University of Jerusalem, Laboratoire Kastler Brossel (LKB (Jussieu)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Computer Science [Haifa], University of Haifa [Haifa], Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,FOS: Computer and information sciences ,Computer science ,Computer Science - Information Theory ,Photoacoustic imaging in biomedicine ,FOS: Physical sciences ,Image processing ,01 natural sciences ,010309 optics ,03 medical and health sciences ,Speckle pattern ,Optics ,Optical imaging ,Signal-to-noise ratio ,0103 physical sciences ,Image resolution ,ComputingMilieux_MISCELLANEOUS ,Dynamic speckle ,[PHYS]Physics [physics] ,business.industry ,Information Theory (cs.IT) ,Atomic and Molecular Physics, and Optics ,Wavelength ,030104 developmental biology ,Compressed sensing ,business ,Optics (physics.optics) ,Physics - Optics - Abstract
In deep tissue photoacoustic imaging the spatial resolution is inherently limited by the acoustic wavelength. Recently, it was demonstrated that it is possible to surpass the acoustic diffraction limit by analyzing fluctuations in a set of photoacoustic images obtained under unknown speckle illumination patterns. Here, we purpose an approach to boost reconstruction fidelity and resolution, while reducing the number of acquired images by utilizing a compressed sensing computational reconstruction framework. The approach takes into account prior knowledge of the system response and sparsity of the target structure. We provide proof of principle experiments of the approach and demonstrate that improved performance is obtained when both speckle fluctuations and object priors are used. We numerically study the expected performance as a function of the measurement's signal to noise ratio and sample spatial-sparsity. The presented reconstruction framework can be applied to analyze existing photoacoustic experimental data sets containing dynamic fluctuations.
- Published
- 2017
- Full Text
- View/download PDF