1. Study of the Reactivity of CH3COOH+• and COOH+ Ions with CH3NH2: Evidence of the Formation of New Peptide-like C(O)−N Bonds
- Author
-
Christian Alcaraz, Imene Derbali, R. Thissen, Emilie-Laure Zins, Claire Romanzin, Institut de Chimie Physique (ICP), and Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010304 chemical physics ,Formic acid ,Methylamine ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Dissociation (chemistry) ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,chemistry.chemical_compound ,Acetic acid ,chemistry ,0103 physical sciences ,Molecule ,Peptide bond ,Reactivity (chemistry) ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Physical and Theoretical Chemistry ,Acetamide ,ComputingMilieux_MISCELLANEOUS - Abstract
Acetamide, a small organic compound containing a peptide bond, was observed in the interstellar medium, but reaction pathways leading to the formation of this prebiotic molecule remain uncertain. We investigated the possible formation of a peptide-like bond from the reaction between acetic acid (CH3-COOH) and methylamine (CH3-NH2) that were identified in the interstellar medium. From an experimental point of view, a quadrupole/octopole/quadrupole mass spectrometer was used in combination with synchrotron radiation as a tunable source of VUV photons for monitoring the reactivity of selected ions. Acetic acid was photoionized, and the reactivity of CH3COOH+• as well as COOH+ (produced from either acetic acid or formic acid) ions with neutral CH3NH2 was further studied. With no surprise, charge transfer, proton transfer, and concomitant dissociation processes were found to largely dominate the reactivity. However, a C(O)-N bond formation process between the two reactants was also evidenced, with a weak cross section reaction. From a theoretical point of view, results concerning reactivity and barrier heights were obtained using density functional theory, with the LC-ωPBE range-separated functional in combination with the 6-311++G(d,p) Pople basis set and are in perfect agreement with the experimental data.
- Published
- 2021
- Full Text
- View/download PDF