1. Comment. What drives plankton seasonality in a stratifying shelf sea? Some competing and complementary theories
- Author
-
Louise Cornwell, Timothy J Smyth, Andrea J. McEvoy, Luca Polimene, Nicolas Djeghri, Sévrine F. Sailley, Elaine S. Fileman, Angus Atkinson, Claire E. Widdicombe, Plymouth Marine Laboratory (PML), Plymouth Marine Laboratory, Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), and Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,010504 meteorology & atmospheric sciences ,western english-channel ,Ecological succession ,Aquatic Science ,Oceanography ,grazing impact ,01 natural sciences ,food-web ,Phytoplankton ,medicine ,functional traits ,14. Life underwater ,calanus-helgolandicus ,0105 earth and related environmental sciences ,station l4 ,Ecology ,Phenology ,ACL ,time-series ,010604 marine biology & hydrobiology ,Community structure ,Plankton ,Spring bloom ,Seasonality ,medicine.disease ,Food web ,spring bloom ,Geography ,phytoplankton ,community structure ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology - Abstract
WOS:000450233300040; The Plymouth L4 time plankton series in the Western English Channel is a textbook example of a shallow, stratifying shelf sea system. Over its 30 yr of weekly sampling, this site has provided a diverse and contrasting suite of numerical and conceptual models of plankton bloom formation, phenology, and seasonal succession. The most recent of these papers, Kenitz et al. (2017) has initiated this comment, partly because we feel that it has presented a slightly misleading picture of the plankton composition at this site, and of a robust, recurring seasonal succession. We address this by illustrating the extent of inter-annual variability in phenology that occurs at the site, and which needs to be captured better within models. However our main aim is to foster a much better integration of the variety of top-down and bottom-up processes that have all been suggested to be key in driving seasonal succession. Some of these, particularly the multiple grazing and growth controls contributing to the so-called "loophole hypothesis" may be complementary, but others, such as the role of copepod feeding traits in driving species succession (Kenitz et al. 2017) offer testable competing hypotheses. The basic assumptions and outputs of all these models need to be validated more critically, both against time series data and process studies that include the finding of unselective feeding. We suggest that the variability in plankton phenology (and not just mean timing and amplitude) could be used to diagnose the performance of alternative models of plankton succession.
- Published
- 2018
- Full Text
- View/download PDF