1. Genetic diversity in a long‐lived mammal is explained by the past’s demographic shadow and current connectivity
- Author
-
Pierrette Nyssen, Sébastien J. Puechmaille, Damien Fourcy, Lisa Lehnen, Martin Biedermann, Wigbert Schorcht, Eric J. Petit, Gerald Kerth, Pierre-Loup Jan, Anne-Laure Besnard, Universität Greifswald - University of Greifswald, Écologie et santé des écosystèmes (ESE), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Interessengemeinschaft für Fledermausschutz und -forschung in Thüringen (IFT) e.V, Natagora (Association), Partenaires INRAE, Nachtaktiv Biologists Bat Res GbR, Erfurt, Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UR226, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), and Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE)
- Subjects
0106 biological sciences ,bottleneck ,Conservation of Natural Resources ,Range (biology) ,Context (language use) ,Biology ,010603 evolutionary biology ,01 natural sciences ,Bottleneck ,03 medical and health sciences ,Genetics ,Animals ,Ecology, Evolution, Behavior and Systematics ,Ecosystem ,030304 developmental biology ,Isolation by distance ,Mammals ,Population Density ,isolation-by-distance ,0303 health sciences ,Genetic diversity ,[SDV.GEN.GPO]Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE] ,Ecology ,Population size ,[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE] ,conservation ,Genetic Variation ,Global change ,genetic diversity ,15. Life on land ,respiratory system ,Genetics, Population ,13. Climate action ,connectivity ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Scale (map) ,human activities ,Microsatellite Repeats - Abstract
International audience; Within-species genetic diversity is crucial for the persistence and integrity of populations and ecosystems. Conservation actions require an understanding of factors influencing genetic diversity, especially in the context of global change. Both population size and connectivity are factors greatly influencing genetic diversity; the relative importance of these factors can, however, change through time. Hence, quantifying the degree to which population size or genetic connectivity are shaping genetic diversity, and at which ecological time scale (past or present), is challenging, yet essential for the development of efficient conservation strategies. In this study, we estimated the genetic diversity of 42 colonies of Rhinolophus hipposideros, a long-lived mammal vulnerable to global change, sampling locations spanning its continental northern range. Here, we present an integrative approach that disentangles and quantifies the contribution of different connectivity measures in addition to contemporary colony size and historic bottlenecks in shaping genetic diversity. In our study, the best model explained 64% of the variation in genetic diversity. It included historic bottlenecks, contemporary colony size, connectivity and a negative interaction between the latter two. Contemporary connectivity explained most genetic diversity when considering a 65 km radius around the focal colonies, emphasizing the large geographic scale at which the positive impact of connectivity on genetic diversity is most profound and hence, the minimum scale at which conservation should be planned. Our results highlight that the relative importance of the two main factors shaping genetic diversity varies through time, emphasizing the relevance of disentangling them to ensure appropriate conservation strategies.
- Published
- 2021
- Full Text
- View/download PDF