6 results on '"Joanne O’Callaghan"'
Search Results
2. Physical oceanography of New Zealand/Aotearoa shelf seas – a review
- Author
-
Stephen M. Chiswell, Craig Stevens, Joanne O’Callaghan, and Mark G. Hadfield
- Subjects
0106 biological sciences ,Region of freshwater influence ,Water mass ,Ecology ,010604 marine biology & hydrobiology ,Stratification (water) ,010501 environmental sciences ,Aquatic Science ,Physical oceanography ,Aotearoa ,01 natural sciences ,Oceanography ,Depth contour ,Ecology, Evolution, Behavior and Systematics ,Geology ,0105 earth and related environmental sciences ,Water Science and Technology - Abstract
The shelf seas surrounding New Zealand/Aotearoa, a region nominally extending out to the 250 m depth contour, are complex and varied as they sit above the submerged continent of Zealandia. ...
- Published
- 2019
- Full Text
- View/download PDF
3. Corrigendum: OceanGliders: A Component of the Integrated GOOS
- Author
-
Pierre Testor, Brad de Young, Daniel L. Rudnick, Scott Glenn, Daniel Hayes, Craig M. Lee, Charitha Pattiaratchi, Katherine Hill, Emma Heslop, Victor Turpin, Pekka Alenius, Carlos Barrera, John A. Barth, Nicholas Beaird, Guislain Bécu, Anthony Bosse, François Bourrin, J. Alexander Brearley, Yi Chao, Sue Chen, Jacopo Chiggiato, Laurent Coppola, Richard Crout, James Cummings, Beth Curry, Ruth Curry, Richard Davis, Kruti Desai, Steve DiMarco, Catherine Edwards, Sophie Fielding, Ilker Fer, Eleanor Frajka-Williams, Hezi Gildor, Gustavo Goni, Dimitri Gutierrez, Peter Haugan, David Hebert, Joleen Heiderich, Stephanie Henson, Karen Heywood, Patrick Hogan, Loïc Houpert, Sik Huh, Mark E. Inall, Masso Ishii, Shin-ichi Ito, Sachihiko Itoh, Sen Jan, Jan Kaiser, Johannes Karstensen, Barbara Kirkpatrick, Jody Klymak, Josh Kohut, Gerd Krahmann, Marjolaine Krug, Sam McClatchie, Frédéric Marin, Elena Mauri, Avichal Mehra, Michael P. Meredith, Thomas Meunier, Travis Miles, Julio M. Morell, Laurent Mortier, Sarah Nicholson, Joanne O'Callaghan, Diarmuid O'Conchubhair, Peter Oke, Enric Pallàs-Sanz, Matthew Palmer, JongJin Park, Leonidas Perivoliotis, Pierre-Marie Poulain, Ruth Perry, Bastien Queste, Luc Rainville, Eric Rehm, Moninya Roughan, Nicholas Rome, Tetjana Ross, Simon Ruiz, Grace Saba, Amandine Schaeffer, Martha Schönau, Katrin Schroeder, Yugo Shimizu, Bernadette M. Sloyan, David Smeed, Derrick Snowden, Yumi Song, Sebastian Swart, Miguel Tenreiro, Andrew Thompson, Joaquin Tintore, Robert E. Todd, Cesar Toro, Hugh Venables, Taku Wagawa, Stephanie Waterman, Roy A. Watlington, Doug Wilson, Variabilité de l'Océan et de la Glace de mer (VOG), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Geophysical Institute [Bergen] (GFI / BiU), University of Bergen (UiB), Instituto del Mar del Peru (IMARPE), Council for Scientific and Industrial Research [Cape Town] (CSIR), Ministery of Science and Technology, Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire d'océanographie de Villefranche (LOV), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,010504 meteorology & atmospheric sciences ,Science ,gliders ,boundary currents ,Ocean Engineering ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,Aquatic Science ,QH1-199.5 ,Oceanography ,01 natural sciences ,Component (UML) ,storms ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Water Science and Technology ,Physics ,Global and Planetary Change ,010604 marine biology & hydrobiology ,General. Including nature conservation, geographical distribution ,Geophysics ,ocean data management ,Boundary current ,water transformation ,in situ ocean observing systems - Abstract
International audience
- Published
- 2021
- Full Text
- View/download PDF
4. Spatial Structure of Low Salinity Submesoscale Features and Their Interactions With a Coastal Current
- Author
-
Mark G. Hadfield, Khushboo Jhugroo, Fiona C. Elliott, Craig Stevens, Helen Macdonald, and Joanne O’Callaghan
- Subjects
0106 biological sciences ,010504 meteorology & atmospheric sciences ,lcsh:QH1-199.5 ,Mixed layer ,shelf seas ,Turner angle ,Stratification (water) ,Ocean Engineering ,submesoscale ,Aquatic Science ,lcsh:General. Including nature conservation, geographical distribution ,Oceanography ,01 natural sciences ,Water column ,stratification ,Barotropic fluid ,lcsh:Science ,Cook Strait ,0105 earth and related environmental sciences ,Water Science and Technology ,Global and Planetary Change ,Advection ,010604 marine biology & hydrobiology ,Glider ,salinity gradients ,Salinity ,Environmental science ,Submarine pipeline ,lcsh:Q - Abstract
Submesoscale features, characterised by a low salinity layer originating from river discharges, enhance water column stability in a New Zealand shelf sea - the Greater Cook Strait. Using a combination of data from multiple ocean glider surveys and regional modelling, we show that low salinity submesoscale features (LSMFs) can cause increased stratification on the order of 10^-4. Modelled oceanographic conditions compared well to observations, especially in austral spring. Stably stratified LSMFs can replace the previously well mixed layer in the water column up to a distance of 100 km offshore before getting entrained by the regional barotropic current in Greater Cook Strait. LSMFs observed from glider surveys and reproduced from modelled results generate strong vertical and horizontal salinity differences of ~0.45 psu. These salinity differences define density fronts and stratification in the upper ~30 m. Temperature differences of up to ~1.4°C associated with LSMFs were not large enough to entirely cancel the density effect of salinity. The offshore advection reach of LSMFs is partly constrained by the variability of the barotropic d'Urville Current. Its presence and strong winds inhibit the propagation of LSMFs offshore in Greater Cook Strait, leaving the water column unstable while enhancing mixing and deepening the mixed layer depth. In contrast, moderate winds and weak current enable the propagation of LSMFs furthest offshore in Greater Cook Strait, where the water column becomes stably stratified. A stably stratified regime inhibits vertical mixing of nutrients and phytoplankton, which may lead to enhanced primary production in the region.
- Published
- 2020
- Full Text
- View/download PDF
5. Developing an Integrated Ocean Observing System for New Zealand
- Author
-
Joanne O’Callaghan, Craig Stevens, Moninya Roughan, Chris Cornelisen, Philip Sutton, Sally Garrett, Giacomo Giorli, Robert O. Smith, Kim I. Currie, Sutara H. Suanda, Michael Williams, Melissa Bowen, Denise Fernandez, Ross Vennell, Benjamin R. Knight, Paul Barter, Peter McComb, Megan Oliver, Mary Livingston, Pierre Tellier, Anna Meissner, Mike Brewer, Mark Gall, Scott D. Nodder, Moira Decima, Joao Souza, Aitana Forcén-Vazquez, Sarah Gardiner, Kura Paul-Burke, Stephen Chiswell, Jim Roberts, Barb Hayden, Barry Biggs, and Helen Macdonald
- Subjects
0106 biological sciences ,Ocean observations ,Leverage (finance) ,lcsh:QH1-199.5 ,010504 meteorology & atmospheric sciences ,Ocean Engineering ,lcsh:General. Including nature conservation, geographical distribution ,Aquatic Science ,Oceanography ,marine community ,01 natural sciences ,Integrated Ocean Observing System ,White paper ,ocean observation network ,Legal guardian ,ocean modeling ,lcsh:Science ,0105 earth and related environmental sciences ,Water Science and Technology ,Global and Planetary Change ,business.industry ,010604 marine biology & hydrobiology ,Environmental resource management ,Mātauranga Māori ,changing ocean climate ,Land area ,Blue economy ,lcsh:Q ,business - Abstract
New Zealand (NZ) is an island nation with stewardship of an ocean twenty times larger than its land area. While the challenges facing NZ’s ocean are similar to other maritime countries, no coherent national plan exists that meets the needs of scientists, stakeholders or kaitiakitanga (guardianship) of NZ’s ocean in a changing climate. The NZ marine science community will use the OceanObs’19 white paper to establish a framework and implementation plan for a collaborative NZ ocean observing system (NZ-OOS). Co-production of ocean knowledge with Māori will be embedded in this national strategy for growing a sustainable, blue economy for NZ. The strengths of an observing system for a relatively small nation come from direct connections between the science impetus through to users and stakeholders of an NZ-OOS. The community will leverage off existing ocean observations to optimise effort and resources in a system that has historically made limited investment in ocean observing. The goal of the community paper will be achieved by bringing together oceanographers, data scientists and marine stakeholders to develop an NZ-OOS that provides best knowledge and tools to the sectors of society that use or are influenced by the ocean.
- Published
- 2019
- Full Text
- View/download PDF
6. Evaluating the Surface Response of Discharge Events in a New Zealand Gulf-ROFI
- Author
-
Joanne O’Callaghan and Craig Stevens
- Subjects
0106 biological sciences ,Buoyancy ,010504 meteorology & atmospheric sciences ,lcsh:QH1-199.5 ,Stratification (water) ,Ocean Engineering ,Aquatic Science ,engineering.material ,lcsh:General. Including nature conservation, geographical distribution ,Oceanography ,01 natural sciences ,stratification ,Marine Science ,lcsh:Science ,0105 earth and related environmental sciences ,Water Science and Technology ,Region of freshwater influence ,Global and Planetary Change ,Advection ,residual circulation ,hypoxia ,010604 marine biology & hydrobiology ,Hypoxia (environmental) ,Annual cycle ,Salinity ,ROFI ,Firth ,river plumes ,transport ,engineering ,Environmental science ,lcsh:Q - Abstract
Using moorings with a surface expression, responses of buoyant river outflows were examined in the Firth-Hauraki Gulf system, New Zealand. The Firth region of freshwater influence (ROFI) behaves as a gulf-type ROFI where the balance of key processes lies between rotation and advection. The latter process is largely regulated by the frequency and amplitude of freshwater discharges. Using 12-months of observations from two inner Firth sites, the system was found to be salinity stratified for up to 4 months of a year. During the largest event (274 m3s-1, mean daily maximum) in 2012 near-oceanic surface salinity (34 psu) freshened substantially down to 28 psu over the upper 3 m. Time lags between freshwater inflows and ROFI response were 4 and 7 days at the Waiheke and WilsonB locations, respectively. Faster seaward advection of surface layers occurred for a minimum of 3 days and up to a week after peak discharges. High frequency winds (~ 3-hourly) were persistent in regulating surface flows over the annual cycle. Surface salinity had peaks in energy that were coherent with surface flows at periods of 16 to 32 days over the Austral winter. The duration of discharge events was O(days), yet responses by buoyancy and advection were evident for weeks to a month in the Firth ROFI.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.