Thierry Gayraud, Rahim Kacimi, Luigi Alfredo Grieco, Ghada Jaber, Temps Réel dans les Réseaux et Systèmes (IRIT-T2RS), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Politecnico di Bari, Équipe Services et Architectures pour Réseaux Avancés (LAAS-SARA), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), and Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
International audience; The information-centric networking (ICN) is an emerging paradigm that grounds networking primitives on content names rather than node locators (as in the current Internet). ICN targets seamless mobility, native muticast/multipath support, and content oriented security to better reflect the needs of today users. ICN could greatly improve the efficiency of content delivery also in wireless sensor networks (WSNs). A WSN typically provides information centric services: in fact, whenever a mote is queried, the asking user is interested to the information acquired by the sensors on top of that mote rather than establishing a point-to-point remote communication. In this manuscript, without lack of generality, we will focus on a particular type of ICN architecture, known as content centric networking (CCN). In such a context, we place our attention on the energy efficiency of forwarding, which is achieved via costly broadcasting. Our objective is to save energy while achieving a high user satisfaction rate. In CCN, when a node requests a content, it sends an interest message and the node with the corresponding content replies with a Content Object message. To enable CCN features, each node maintains three tables: a Content Store to cache contents; a Forwarding Interest Base to store forwarded interests and a Pending Interest Table (PIT) to record unsatisfied interests. In this work, we start by introducing the features of CCN in WSNs and the advantages that it brings. For the forwarding optimization, we come up with an ‘Adaptive and fully Distributed Duty-Cycle for Content-Centric Wireless Sensor Network’ (ADDC-CCWSN) mechanism. ADDC-CCWSN aims to reduce the activity of nodes with a high percentage of unsatisfied interests in their PIT. We argue that the approach can be applied (with some modifications) to any ICN architecture that works as a network of caches in pull mode. We also propose an analytical model for CCN-WSNs to examine the energy consumption of content delivery. In addition, we implement the proposed mechanism on Contiki and, through extensive simulations with Cooja, we demonstrate that our approach achieves a significant gain of energy efficiency compared to a CCN approach with mostly-on sensor nodes while ensuring a high interest satisfaction rate and keeping nearly the same delay.