1. A research of chemical nature and surface properties of plant disperse fillers
- Author
-
Yuliya Danchenko, Artem Kariev, Vladimir Andronov, Anna Cherkashina, Vladimir Lebedev, Tetiana Shkolnikova, Oleksii Burlutskyi, Anatoliy Kosse, Yuriy Lutsenko, and Dayana Yavors'ka
- Subjects
functional group ,020209 energy ,Potentiometric titration ,0211 other engineering and technologies ,Energy Engineering and Power Technology ,Infrared spectroscopy ,02 engineering and technology ,engineering.material ,Industrial and Manufacturing Engineering ,chemistry.chemical_compound ,Adsorption ,Management of Technology and Innovation ,Filler (materials) ,lcsh:Technology (General) ,021105 building & construction ,0202 electrical engineering, electronic engineering, information engineering ,lcsh:Industry ,surface ,acid-base characteristics ,Surface layer ,Electrical and Electronic Engineering ,Cellulose ,Aqueous solution ,plant waste ,Applied Mathematics ,Mechanical Engineering ,chemical nature ,Computer Science Applications ,Chemical engineering ,chemistry ,Control and Systems Engineering ,engineering ,lcsh:T1-995 ,lcsh:HD2321-4730.9 ,Dispersion (chemistry) - Abstract
Chemical nature and surface properties of plant disperse fillers are investigated: buckwheat (BH) and oat (OH) husk, wood (WF) and conifer flour (CF). Using IR spectroscopy, it was found that oxygen-containing atomic groups –OH, –C–O–, –C=O prevail in the filler components. It was found that a hydroxyl-hydrate layer of functional groups is present on the surface of air-dry fillers. By potentiometric titration of aqueous suspensions using the Parks–Bobyrenko method, it was determined that all fillers are of the «polyfunctional solid» type. It is shown that the hydroxyl-hydrate surface layer consists of functional groups with similar values of acid-base characteristics. Functional groups of acidic nature were additionally found on the surface of the fillers: groups withpKa≈4.37−5.66 on the BH surface, groups withpKa≈4.49−4.90 on the CF surface and groups withpKa≈3.91−4.30 on the WF surface. As a result of potentiometric titration, it was shown that the surface acidity of the fillers decreases in the WF>CF>BH>ОH series, which coincides with the one in which the total cellulose and lignin content decreases, and the resistance of fillers to thermal-oxidative breakdown increases. It was found that the rate of hydrolytic processes in aqueous suspensions at the interface decreases in the ОH>CF>BH>WF series and inversely depends on the concentration of functional groups on the surface of the fillers, and also that the change in the rate of hydrolytic processes at the interface depending on the content of fillers is described by step functions. It is revealed that for the effective use of the studied disperse waste in composite materials and as adsorbents for the extraction of pollutants, dispersion media with the following ranges of the hydrogen index are required: for BH − pH>4.4; OH − pH>6.4; WF − pH>3.9; CF − pH>4.5. The results obtained make it possible to predict and control acid-base interfacial interactions, as well as reasonably approach the development of new effective technologies
- Published
- 2020