1. A novel optimal data fusion algorithm and its application for the integrated navigation system of missile
- Author
-
Di Liu, Xiao Liu, and Xiyuan Chen
- Subjects
0209 industrial biotechnology ,Celestial navigation ,Computer science ,Mechanical Engineering ,Aerospace Engineering ,Navigation system ,02 engineering and technology ,Filter (signal processing) ,01 natural sciences ,010305 fluids & plasmas ,Computer Science::Robotics ,020901 industrial engineering & automation ,Missile ,Robustness (computer science) ,GNSS applications ,0103 physical sciences ,Fading ,Algorithm ,Inertial navigation system - Abstract
For Inertial Navigation System (INS)/Celestial Navigation System (CNS)/Global Navigation Satellite System (GNSS) integrated navigation system of the missile, the performance of data fusion algorithms based on the Cubature Kalman Filter (CKF) is seriously degraded when there are non-Gaussian noise and process-modeling errors in the system model. Therefore, a novel method is proposed, which is called Optimal Data Fusion algorithm based on the Adaptive Fading maximum Correntropy generalized high-degree CKF (AFCCKF-ODF). First, the Adaptive Fading maximum Correntropy generalized high-degree CKF (AFCCKF) is proposed and used as the local filter for the INS/GNSS and INS/CNS subsystems to improve the robustness of local state estimation. Then, the local state estimation is fused based on the minimum variance principle and high-degree cubature criterion to get the globally optimal state. Finally, the experimental results verify that the proposed algorithm can significantly improve the robustness of the missile-borne INS/CNS/GNSS integrated navigation system to non-Gaussian noise and process modeling error and obtain the global optimal navigation information.
- Published
- 2022
- Full Text
- View/download PDF