1. Nonlinear system fault detection and isolation based on bootstrap particle filters
- Author
-
F. Legland, Frédéric Cérou, Qinghua Zhang, Fabien Campillo, Applications and Tools of Automatic Control (SOSSO2), Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Applications of interacting particle systems to statistics (ASPI), Université de Rennes (UR)-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), IEEE--CSS, Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Inria Rennes – Bretagne Atlantique
- Subjects
0209 industrial biotechnology ,Engineering ,business.industry ,020206 networking & telecommunications ,02 engineering and technology ,Fault detection and isolation ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Nonlinear system ,020901 industrial engineering & automation ,Discrete time and continuous time ,Control theory ,Nonlinear dynamic systems ,0202 electrical engineering, electronic engineering, information engineering ,Particle filter ,business ,Particle filtering algorithm - Abstract
International audience; A particle filter based method for nonlinear system fault detection and isolation is proposed in this paper. It is applicable to quite general stochastic nonlinear dynamic systems in discrete time. The main result consists of a new particle filter algorithm, derived from the basic bootstrap particle filter, and capable of rejecting a subset of the faults possibly affecting the considered system. Fault isolation is then achieved by the evaluation of the estimated likelihoods related to the designed filters.
- Published
- 2005