1. Clustered Dynamic Graph CNN for Biometric 3D Hand Shape Recognition
- Author
-
Michael M. Bronstein, Jonathan Masci, Pietro Astolfi, Jan Svoboda, and Davide Boscaini
- Subjects
Biometrics ,Computer science ,business.industry ,Deep learning ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,020207 software engineering ,Pattern recognition ,02 engineering and technology ,Solid modeling ,010501 environmental sciences ,01 natural sciences ,Synthetic data ,Data modeling ,Set (abstract data type) ,0202 electrical engineering, electronic engineering, information engineering ,Benchmark (computing) ,Graph (abstract data type) ,Artificial intelligence ,business ,0105 earth and related environmental sciences - Abstract
The research in biometric recognition using hand shape has been somewhat stagnating in the last decade. Meanwhile, computer vision and machine learning have experienced a paradigm shift with the renaissance of deep learning, which has set the new state-of-the-art in many related fields. Inspired by successful applications of deep learning for other biometric modalities, we propose a novel approach to 3D hand shape recognition from RGB-D data based on geometric deep learning techniques. We show how to train our model on synthetic data and retain the performance on real samples during test time. To evaluate our method, we provide a new dataset NNHand RGB- D of short video sequences and show encouraging performance compared to diverse baselines on the new data, as well as current benchmark dataset HKPolyU. Moreover, the new dataset opens door to many new research directions in hand shape recognition.
- Published
- 2020
- Full Text
- View/download PDF