1. Using autoencoders for session-based job recommendations
- Author
-
Elisabeth Lex, Emanuel Lacic, Junghoo Cho, Manoj Reddy Dareddy, Dominik Kowald, and Markus Reiter-Haas
- Subjects
Job applications ,Information retrieval ,Computer science ,Novelty ,02 engineering and technology ,ENCODE ,Autoencoder ,Session (web analytics) ,Computer Science Applications ,Education ,Domain (software engineering) ,Human-Computer Interaction ,020204 information systems ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Multimedia information systems - Abstract
In this work, we address the problem of providing job recommendations in an online session setting, in which we do not have full user histories. We propose a recommendation approach, which uses different autoencoder architectures to encode sessions from the job domain. The inferred latent session representations are then used in a k-nearest neighbor manner to recommend jobs within a session. We evaluate our approach on three datasets, (1) a proprietary dataset we gathered from the Austrian student job portal Studo Jobs, (2) a dataset released by XING after the RecSys 2017 Challenge and (3) anonymized job applications released by CareerBuilder in 2012. Our results show that autoencoders provide relevant job recommendations as well as maintain a high coverage and, at the same time, can outperform state-of-the-art session-based recommendation techniques in terms of system-based and session-based novelty.
- Published
- 2020
- Full Text
- View/download PDF