1. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene
- Author
-
Luis Martín-Moreno, Frank H. L. Koppens, T. M. Slipchenko, Klaas-Jan Tielrooij, Elefterios Lidorikis, Sebastián Castilla, Takashi Taniguchi, Kenji Watanabe, Ioannis Vangelidis, Marta Autore, Varun-Varma Pusapati, Rainer Hillenbrand, Jordan Goldstein, Seyoon Kim, Dirk Englund, Khannan Rajendran, European Commission, Ministerio de Economía y Competitividad (España), Fundació Privada Cellex, Generalitat de Catalunya, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), US Army Research Office, Gobierno de Aragón, Massachusetts Institute of Technology, and Universitat Politècnica de Catalunya. Doctorat en Fotònica
- Subjects
Physics - Instrumentation and Detectors ,Antenna coupling ,Mid infrared ,General Physics and Astronomy ,Physics::Optics ,02 engineering and technology ,European Social Fund ,Applied Physics (physics.app-ph) ,Two-dimensional materials ,7. Clean energy ,01 natural sciences ,Plasmons (Physics) ,terahertz ,Astrophysics::Solar and Stellar Astrophysics ,photoresponse ,lcsh:Science ,media_common ,Multidisciplinary ,Physics - Applied Physics ,Instrumentation and Detectors (physics.ins-det) ,Remote sensing ,021001 nanoscience & nanotechnology ,boron-nitride ,Christian ministry ,0210 nano-technology ,Infrared detectors ,Physics - Optics ,media_common.quotation_subject ,Science ,Library science ,Polaritons ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,010402 general chemistry ,General Biochemistry, Genetics and Molecular Biology ,Article ,Excellence ,Political science ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Physics::Atomic and Molecular Clusters ,media_common.cataloged_instance ,European union ,Astrophysics::Galaxy Astrophysics ,Optical detectors ,Nanophotonics and plasmonics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Física [Àrees temàtiques de la UPC] ,General Chemistry ,0104 chemical sciences ,Optical properties and devices ,lcsh:Q ,Partial support ,Optics (physics.optics) - Abstract
Integrating and manipulating the nano-optoelectronic properties of Van der Waals heterostructures can enable unprecedented platforms for photodetection and sensing. The main challenge of infrared photodetectors is to funnel the light into a small nanoscale active area and efficiently convert it into an electrical signal. Here, we overcome all of those challenges in one device, by efficient coupling of a plasmonic antenna to hyperbolic phonon-polaritons in hexagonal-BN to highly concentrate mid-infrared light into a graphene pn-junction. We balance the interplay of the absorption, electrical and thermal conductivity of graphene via the device geometry. This approach yields remarkable device performance featuring room temperature high sensitivity (NEP of 82 pW/Hz−−−√) and fast rise time of 17 nanoseconds (setup-limited), among others, hence achieving a combination currently not present in the state-of-the-art graphene and commercial mid-infrared detectors. We also develop a multiphysics model that shows very good quantitative agreement with our experimental results and reveals the different contributions to our photoresponse, thus paving the way for further improvement of these types of photodetectors even beyond mid-infrared range., F.H.L.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Programme for Centres of Excellence in R& D (SEV-2015-0522), support by Fundacio Cellex Barcelona, Generalitat de Catalunya through the CERCA program, and the Agency for Management of University and Research Grants (AGAUR) 2017 SGR 1656. Furthermore, the research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement no. 785219 and no. 881603 Graphene Flagship for Core2 and Core3. ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706). K.J.T. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 804349. R.H. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (national project RTI2018-094830-B-100 and the project MDM-2016-0618 of the Marie de Maeztu Units of Excellence Program) and the Basque Government (grant No. IT1164-19). S.C. acknowledges financial support from the Barcelona Institute of Science and Technology (BIST), the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya and the European Social Fund (L’FSE inverteix en el teu futur)—FEDER. D.E. acknowledges partial support from the Army Research Office MURI “Ab-Initio Solid-State Quantum Materials” Grant No. W911NF18-1-0431. J.G. was supported by the ARL-MIT Institute for Soldier Nanotechnologies (ISN). T.S. and L.M.M. acknowledge support by Spain’s MINECO under Grant No. MAT2017-88358-C3-1-R and the Aragon Government through project Q-MAD.
- Published
- 2020