1. An augmented crowd simulation system using automatic determination of navigable areas
- Author
-
Sinan Sonlu, Uğur Güdükbay, Yalım Doğan, Doğan, Yalım, Sonlu, Sinan, and Güdükbay, Uğur
- Subjects
Crowd simulation ,Computer science ,Pedestrian detection ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Data-driven simulation ,Augmented reality ,02 engineering and technology ,Three-dimensional reconstruction ,Task (project management) ,Entertainment ,Crowds ,Component (UML) ,0202 electrical engineering, electronic engineering, information engineering ,Segmentation ,Computer vision ,business.industry ,General Engineering ,Deep learning ,020207 software engineering ,Collision ,Computer Graphics and Computer-Aided Design ,Human-Computer Interaction ,020201 artificial intelligence & image processing ,Artificial intelligence ,business ,Pedestrian detection and tracking - Abstract
Crowd simulations imitate the group dynamics of individuals in different environments. Applications in entertainment, security, and education require augmenting simulated crowds into videos of real people. In such cases, virtual agents should realistically interact with the environment and the people in the video. One component of this augmentation task is determining the navigable regions in the video. In this work, we utilize semantic segmentation and pedestrian detection to automatically locate and reconstruct the navigable regions of surveillance-like videos. We place the resulting flat mesh into our 3D crowd simulation environment to integrate virtual agents that navigate inside the video avoiding collision with real pedestrians and other virtual agents. We report the performance of our open-source system using real-life surveillance videos, based on the accuracy of the automatically determined navigable regions and camera configuration. We show that our system generates accurate navigable regions for realistic augmented crowd simulations.
- Published
- 2021
- Full Text
- View/download PDF