Olivier Berder, Matthieu Gautier, Fayçal Ait Aoudia, Mickael Le Gentil, Michele Magno, Luca Benini, Algorithmes et architectures adaptatifs pour les systèmes sans-fils efficaces en énergie (GRANIT), ARCHITECTURE (IRISA-D3), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Aoudia, Fayçal Ait, Gautier, Matthieu, Magno, Michele, Gentil, Mickaël Le, Berder, Olivier, Benini, Luca, CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
International audience; Wireless sensor and actuator networks play a central role in the Internet of Things, and a lot of effort is devoted to enable energy efficient and low latency communications. In the recent years, low power communications has evolved towards multi-kilometer ranges and low bit-rate approaches such as LoRa TM. However, the medium access layer protocols rely on the well-known duty-cycling schemes, which require a trade-off between power consumption and latency for message transfer from the gateway to the nodes. Domains such as industrial applications in which sensors and actuators are part of the control loop require predictable latency, as well as low power consumption. Emerging ultra-low-power wake-up receivers enable pure-asynchronous communications, allowing both low latency and low power consumption, but at the cost of a lower sensitivity and lower range than traditional wireless receivers and LoRa TM. In this work, we propose an energy efficient architecture that combines long-range communication with ultra low-power short-range wake-up receivers to achieve both energy efficient and low latency communication in heterogeneous long-short range networks. A hardware architecture as well as a protocol is proposed to exploit the benefits of these two communication schemes. Experimental measurements and analytical comparisons show that the proposed approach remove the need for a trade-off between power consumption and latency.