1. A Comprehensive Framework for Saturation Theorem Proving
- Author
-
Waldmann, Uwe, Tourret, Sophie, Robillard, Simon, Blanchette, Jasmin, Peltier, Nicolas, Sofronie-Stokkermans, Viorica, Theoretical Computer Science, Network Institute, Max-Planck-Institut für Informatik (MPII), Max-Planck-Gesellschaft, Modeling and Verification of Distributed Algorithms and Systems (VERIDIS), Department of Formal Methods (LORIA - FM), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Max-Planck-Institut für Informatik (MPII), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Département Automatique, Productique et Informatique (IMT Atlantique - DAPI), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Vrije Universiteit Amsterdam [Amsterdam] (VU), Proof-oriented development of computer-based systems (MOSEL), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Peltier, Nicolas, Sofronie-Stokkermans, Viorica, Max-Planck-Gesellschaft-Max-Planck-Gesellschaft-Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Formal Methods (LORIA - FM), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria), Université de Montpellier (UM), and IMT Atlantique (IMT Atlantique)
- Subjects
Computer science ,Prover architectures ,02 engineering and technology ,Gas meter prover ,Mathematical proof ,Article ,Image (mathematics) ,Automated theorem proving Saturation Resolution calculus Superposition calculus Redundancy Prover architectures ,Redundancy ,Artificial Intelligence ,Completeness (order theory) ,0202 electrical engineering, electronic engineering, information engineering ,Calculus ,Redundancy (engineering) ,Automated theorem proving ,Superposition calculus ,[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] ,020207 software engineering ,Resolution (logic) ,Saturation ,Resolution calculus ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,Cover (topology) ,Computational Theory and Mathematics ,TheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS ,020201 artificial intelligence & image processing ,Software - Abstract
A crucial operation of saturation theorem provers is deletion of subsumed formulas. Designers of proof calculi, however, usually discuss this only informally, and the rare formal expositions tend to be clumsy. This is because the equivalence of dynamic and static refutational completeness holds only for derivations where all deleted formulas are redundant, but the standard notion of redundancy is too weak: A clause C does not make an instance $$C\sigma $$ C σ redundant. We present a framework for formal refutational completeness proofs of abstract provers that implement saturation calculi, such as ordered resolution and superposition. The framework modularly extends redundancy criteria derived via a familiar ground-to-nonground lifting. It allows us to extend redundancy criteria so that they cover subsumption, and also to model entire prover architectures so that the static refutational completeness of a calculus immediately implies the dynamic refutational completeness of a prover implementing the calculus within, for instance, an Otter or DISCOUNT loop. Our framework is mechanized in Isabelle/HOL.
- Published
- 2022
- Full Text
- View/download PDF