1. Electro-mechanical Resonant Ice Protection Systems: Power requirements for fractures initiation and propagation
- Author
-
Valérie Pommier-Budinger, Valerian Palanque, Marc Budinger, Lokman Bennani, David Delsart, Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), ONERA / DMPE, Université de Toulouse [Toulouse], ONERA-PRES Université de Toulouse, Institut Clément Ader (ICA), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), DMAS, ONERA [Lille], ONERA, Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
- Subjects
[PHYS]Physics [physics] ,020301 aerospace & aeronautics ,Work (thermodynamics) ,Materials science ,business.industry ,Computation ,02 engineering and technology ,Structural engineering ,Low frequency ,01 natural sciences ,Piezoelectricity ,010305 fluids & plasmas ,Power (physics) ,Electro-mechanical ,[SPI]Engineering Sciences [physics] ,0203 mechanical engineering ,Flexural strength ,Design criteria ,De-icing ,0103 physical sciences ,Fracture (geology) ,Shear stress ,business ,Piezo-electricity - Abstract
International audience; This article focuses on resonant ice protection systems and studies fracture mechanisms at work for flexural modes having frequencies lower than100 kHz. The objective is to study the power required for fracture initiation and propagation in this frequency range. Two types of deicing mechanisms are studied in this paper: tensile stress dominant flexural modes and shear stress dominant flexural modes. Criteria are introduced to enable the comparison between these deicing mechanisms according to their power requirements and the selection of the most promising configurations. Eventually, the numerical results are compared to experiments to verify assumptions and computations. The contribution of this article is to put forward power-efficient de-icing configurations for resonant electromechanical de-icing systems using flexural modes. Low frequency flexural modes appear to be less power consuming for both mechanisms. Tensile stress dominant flexural modes have lower power requirements than shear stress dominant modes. The instantaneous peak power requirement to cover 90% of the area is estimated to be 5.5 kW/m².
- Published
- 2021
- Full Text
- View/download PDF