1. Nanocontact vortex oscillators based on Co2MnGe pseudo spin valves
- Author
-
Myoung-Woo Yoo, Karim Bouzehouane, Aymeric Vecchiola, Thibaut Devolder, Claudia de Melo, Vincent Cros, Sébastien Petit-Watelot, Joo-Von Kim, Damien Rontani, Stéphane Andrieu, Charles Guillemard, Jérémy Létang, Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chaire Photonique, Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS), CentraleSupélec-Université de Lorraine (UL)-CentraleSupélec-Université de Lorraine (UL), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES-Centre National de la Recherche Scientifique (CNRS), and ANR-17-CE24-0008,CHIPMuNCS,Traitement de l'information par des oscillateurs nano-magnétiques chaotiques(2017)
- Subjects
Materials science ,FOS: Physical sciences ,02 engineering and technology ,engineering.material ,01 natural sciences ,Gyration ,Condensed Matter::Materials Science ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,[NLIN]Nonlinear Sciences [physics] ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Spin-½ ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed matter physics ,Order (ring theory) ,Vorticity ,021001 nanoscience & nanotechnology ,Heusler compound ,Vortex ,Ferromagnetism ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,engineering ,0210 nano-technology ,Molecular beam epitaxy - Abstract
We present an experimental study of vortex dynamics in magnetic nanocontacts based on pseudo spin valves comprising the ${\mathrm{Co}}_{2}\mathrm{MnGe}$ Heusler compound. The films were grown by molecular beam epitaxy, where precise stoichiometry control and tailored stacking order allowed us to define the bottom ferromagnetic layer as the reference layer, with minimal coupling between the free and reference layers. 20-nm diameter nanocontacts were fabricated using a nanoindentation technique, leading to self-sustained gyration of the vortex generated by spin-transfer torques above a certain current threshold. By combining frequency- and time-domain measurements, we show that different types of spin-transfer induced dynamics related to different modes associated to the magnetic vortex configuration can be observed, such as mode hopping, mode coexistence, and mode extinction appearing in addition to the usual gyration mode.
- Published
- 2021
- Full Text
- View/download PDF