1. One-step in-situ fabrication of carbon nanotube/stainless steel mesh membrane with excellent anti-fouling properties for effective gravity-driven filtration of oil-in-water emulsions
- Author
-
Xiaoyu Ma, Hongjie Li, Yi He, Teng He, Xiangying Yin, Liang Zhou, and Shuangshuang Li
- Subjects
Nanotube ,Materials science ,Fouling ,Membrane fouling ,One-Step ,02 engineering and technology ,Carbon nanotube ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,law.invention ,Biomaterials ,Colloid and Surface Chemistry ,Membrane ,Chemical engineering ,law ,Reagent ,0210 nano-technology ,Filtration - Abstract
The occurrence of membrane fouling has resulted in limited wastewater treatment applications. The development of superhydrophilic-underwater superoleophobic materials has received significant attention owing to their good anti-fouling properties. However, to fabricate such materials need costly regents and tedious steps. Thus, developing a one-step process to prepare a low-cost material for oil/water separation is still desired. In this study, bio-inspired from an arachnid, inorganic carbon nanotube stainless steel meshes (CNT@SSMs) having superhydrophilic-underwater superoleophobic and excellent anti-fouling properties and a unique fiber structure were fabricated via a one-step thermal chemical vapor deposition method. The CNT@SSMs had a small pore size enabling a high water flux of 10,639 L m−2h−1 and the separation of oily wastewater, including various emulsions, at a high rejection ratio of >98.89%. As a result of its excellent chemical stability under high temperatures, a broad pH range, and saline environments, the CNT@SSM has the potential to be used in extreme conditions. In summary, these CNT@SSMs are easy to fabricate and are low-cost as a result of inexpensive reagents involved. Moreover, these novel superwetting membranes are promising candidates for treatment of hazardous oily wastewater.
- Published
- 2021