1. Comprehensive analysis of formin gene family highlights candidate genes related to pollen cytoskeleton and male fertility in wheat (Triticum aestivum L.)
- Author
-
Feng-kun Lu, Shaohua Yuan, Jianfang Bai, Liping Zhang, Tian-bao Zhang, Fengting Zhang, Zi-han Liu, Wenjing Duan, Yan-mei Li, Jia-hui Sun, and Changping Zhao
- Subjects
0106 biological sciences ,0301 basic medicine ,Candidate gene ,Sterility ,Stamen ,Formins ,Thermo-sensitive genic male sterile ,Biology ,QH426-470 ,Microtubules ,01 natural sciences ,03 medical and health sciences ,chemistry.chemical_compound ,Gene Expression Regulation, Plant ,Genetics ,Gene family ,Abscisic acid ,Gene ,Triticum ,Cytoskeleton ,Plant Proteins ,Methyl jasmonate ,Research ,food and beverages ,Plant Breeding ,Fertility ,030104 developmental biology ,chemistry ,Wheat ,Pollen ,Formin gene family ,DNA microarray ,MiRNA ,TP248.13-248.65 ,010606 plant biology & botany ,Biotechnology - Abstract
Background Formin, a highly conserved multi-domain protein, interacts with microfilaments and microtubules. Although specifically expressed formin genes in anthers are potentially significant in research on male sterility and hybrid wheat breeding, similar reports in wheat, especially in thermo-sensitive genic male sterile (TGMS) wheat, remain elusive. Results Herein, we systematically characterized the formin genes in TGMS wheat line BS366 named TaFormins (TaFHs) and predicted their functions in inducing stress response. In total, 25 TaFH genes were uncovered, majorly localized in 2A, 2B, and 2D chromosomes. According to the neighbor-joining (NJ) method, all TaFH proteins from wheat and other plants clustered in 6 sub-groups (A-F). The modeled 3D structures of TaFH1-A/B, TaFH2-A/B, TaFH3-A/B and TaFH3-B/D were validated. And different numbers of stress and hormone-responsive regulatory elements in their 1500 base pair promoter regions were contained in the TaFH genes copies. TaFHs had specific temporal and spatial expression characteristics, whereby TaFH1, TaFH4, and TaFH5 were expressed highly in the stamen of BS366. Besides, the accumulation of TaFHs was remarkably lower in a low-temperature sterile condition (Nanyang) than fertile condition (Beijing), particularly at the early stamen development stage. The pollen cytoskeleton of BS366 was abnormal in the three stages under sterile and fertile environments. Furthermore, under different stress levels, TaFHs expression could be induced by drought, salt, abscisic acid (ABA), salicylic acid (SA), methyl jasmonate (MeJA), indole-3-acetic acid (IAA), polyethylene glycol (PEG), and low temperature. Some miRNAs, including miR167, miR1120, and miR172, interacts with TaFH genes; thus, we constructed an interaction network between microRNAs, TaFHs, phytohormone responses, and distribution of cytoskeleton to reveal the regulatory association between upstream genes of TaFH family members and sterile. Conclusions Collectively, this comprehensive analysis provides novel insights into TaFHs and miRNA resources for wheat breeding. These findings are, therefore, valuable in understanding the mechanism of TGMS fertility conversion in wheat.
- Published
- 2021