1. Aberration correction in transcranial ultrasonic imaging using CT data and simulation-based focusing algorithms
- Author
-
Arthur Waguet, Ekaterina Iakovleva, Sylvain Chatillon, Vincent Brulon, Jean-Luc Gennisson, Département Imagerie et Simulation pour le Contrôle (DISC), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Unité BioMaps (BIOMAPS), Service Hospitalier Frédéric Joliot (SHFJ), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), LaBoratoire d'Imagerie biOmédicale MultimodAle Paris-Saclay (BIOMAPS), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Wavefront ,Physics ,Acoustics and Ultrasonics ,Phased array ,Attenuation ,Physics::Medical Physics ,Phase (waves) ,01 natural sciences ,Imaging phantom ,03 medical and health sciences ,0302 clinical medicine ,Arts and Humanities (miscellaneous) ,0103 physical sciences ,Ultrasonic sensor ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,030223 otorhinolaryngology ,010301 acoustics ,Ultrashort pulse ,Algorithm ,Beam (structure) - Abstract
International audience; The complex structure of the skull bone, reflected in particular by spatial variations in thickness and density, leads to a heterogeneity of its acoustic properties. This results in a strong attenuation as well as specific phase shifts of the ultrasonic wave during its crossing, leading to a defocusing of the beam. The improvement of the quality of brain ultrasonography requires knowledge of these acoustic heterogeneities to shape the ultrasonic wavefront during the focusing and imaging processes. CT scan realized on a phantom of a human skull associated to a fusion tool available on an ultrafast ultrasound device (Aixplorer, Supersonic Imagine, France) allows the positioning of the phased array in real-time in the CT volume. Then, for a fixed position of the probe, the real geometry of the skull region insonified by the array can be used as input data of the simulation based imaging algorithms. In particular, the Plane Wave Imaging (PWI) and Total Focusing Method (TFM) algorithms exploit a direct model of beam propagation through 3-D complex surfaces in order to simulate and correct the aberrations due to the skull crossing. We illustrate the potential of this technique on several examples of brain echography.
- Published
- 2020
- Full Text
- View/download PDF