1. NOGEA: A Network-oriented Gene Entropy Approach for Dissecting Disease Comorbidity and Drug Repositioning
- Author
-
Zhenzhong Wang, Chunli Zheng, Yonghua Wang, Yan Li, Yingxue Fu, Xuetong Chen, Zihu Guo, Zhu Jingbo, Wei Xiao, Ziyin Wu, Shuo Gao, Chao Huang, Yaohua Ma, Mohamed Shahen, and Pengfei Tu
- Subjects
Computer science ,Entropy ,Gene regulatory network ,Comorbidity ,Computational biology ,Disease ,Biochemistry ,Interactome ,03 medical and health sciences ,0302 clinical medicine ,Genetics ,medicine ,Humans ,Gene Regulatory Networks ,Molecular Biology ,Gene ,030304 developmental biology ,0303 health sciences ,Drug Repositioning ,Computational Biology ,Reproducibility of Results ,medicine.disease ,Computational Mathematics ,Drug repositioning ,Identification (biology) ,030217 neurology & neurosurgery ,Systems pharmacology - Abstract
Rapid development of high-throughput technologies has permitted the identification of an increasing number of disease-associated genes (DAGs), which are important for understanding disease initiation and developing precision therapeutics. However, DAGs often contain large amounts of redundant or false positive information, leading to difficulties in quantifying and prioritizing potential relationships between these DAGs and human diseases. In this study, a network-oriented gene entropy approach (NOGEA) is proposed for accurately inferring master genes that contribute to specific diseases by quantitatively calculating their perturbation abilities on directed disease-specific gene networks. In addition, we confirmed that the master genes identified by NOGEA have a high reliability for predicting disease-specific initiation events and progression risk. Master genes may also be used to extract the underlying information of different diseases, thus revealing mechanisms of disease comorbidity. More importantly, approved therapeutic targets are topologically localized in a small neighborhood of master genes in the interactome network, which provides a new way for predicting drug-disease associations. Through this method, 11 old drugs were newly identified and predicted to be effective for treating pancreatic cancer and then validated by in vitro experiments. Collectively, the NOGEA was useful for identifying master genes that control disease initiation and co-occurrence, thus providing a valuable strategy for drug efficacy screening and repositioning. NOGEA codes are publicly available at https://github.com/guozihuaa/NOGEA.
- Published
- 2021
- Full Text
- View/download PDF