1. Nuclear factor E2-related factor-2 has a differential impact on MCT1 and MCT4 lactate carrier expression in colonic epithelial cells: a condition favoring metabolic symbiosis between colorectal cancer and stromal cells
- Author
-
Plundrich D, Dinges La, N Ammar, Heiner Schäfer, Ole Helm, Diehl K, Susanne Sebens, Alexander Arlt, and Christoph Röcken
- Subjects
Monocarboxylic Acid Transporters ,0301 basic medicine ,Cancer Research ,Stromal cell ,Colon ,NF-E2-Related Factor 2 ,Biopsy ,Muscle Proteins ,Apoptosis ,Biology ,environment and public health ,Malignant transformation ,03 medical and health sciences ,Growth factor receptor ,Cell Line, Tumor ,Tumor Microenvironment ,Genetics ,Humans ,Reverse Warburg effect ,Lactic Acid ,Intestinal Mucosa ,RNA, Small Interfering ,Molecular Biology ,Gene knockdown ,Symporters ,CD68 ,Macrophages ,Epithelial Cells ,Fibroblasts ,respiratory system ,Inflammatory Bowel Diseases ,Coculture Techniques ,Cell biology ,Gene Expression Regulation, Neoplastic ,Oxidative Stress ,Cell Transformation, Neoplastic ,030104 developmental biology ,Cell culture ,Gene Knockdown Techniques ,Stromal Cells ,Colorectal Neoplasms ,Reactive Oxygen Species - Abstract
Malignant tumors, such as colorectal cancer (CRC), are heterogeneous diseases characterized by distinct metabolic phenotypes. These include Warburg- and reverse Warburg phenotypes depending on differential distribution of the lactate carrier proteins monocarboxylate transporter-4 and -1 (MCT4 and MCT1). Here, we elucidated the role of the antioxidant transcription factor nuclear factor E2-related factor-2 (Nrf2) as the key regulator of cellular adaptation to inflammatory/environmental stress in shaping the metabolism toward a reverse Warburg phenotype in malignant and premalignant colonic epithelial cells. Immunohistochemistry of human CRC tissues revealed reciprocal expression of MCT1 and MCT4 in carcinoma and stroma cells, respectively, accompanied by strong epithelial Nrf2 activation. In colorectal tissue from inflammatory bowel disease patients, MCT1 and Nrf2 were coexpressed as well, relating to CD68+inflammatory infiltrates. Indirect coculture of human NCM460 colonocytes with M1- but not M2 macrophages induces MCT1 as well as G6PD, LDHB and TALDO expression, whereas MCT4 expression was decreased. Nrf2 knockdown or reactive oxygen species (ROS) scavenging blocked these coculture effects in NCM460 cells. Likewise, Nrf2 knockdown inhibited similar effects of tBHQ-mediated Nrf2 activation on NCM460 and HCT15 CRC cells. M1 coculture or Nrf2 activation/overexpression greatly altered the lactate uptake but not glucose uptake and mitochondrial activities in these cells, reflecting the reverse Warburg phenotype. Depending on MCT1-mediated lactate uptake, Nrf2 conferred protection from TRAIL-induced apoptosis in NCM460 and HCT15 cells. Moreover, metabolism-dependent clonal growth of HCT15 cells was induced by Nrf2-dependent activation of MCT1-driven lactate exchange. These findings indicate that Nrf2 has an impact on the metabolism already in premalignant colonic epithelial cells exposed to inflammatory M1 macrophages, an effect accompanied by growth and survival alterations. Favoring the reverse Warburg effect, these Nrf2-dependent alterations add to malignant transformation of the colonic epithelium.
- Published
- 2017
- Full Text
- View/download PDF