1. Adhesive bonding of noble metals with a thiohydantoin primer
- Author
-
Akihisa Kodaira, Hideo Matsumura, Takayuki Yoneyama, Kousuke Takehana, Haruto Hiraba, and Hiroyasu Koizumi
- Subjects
Boron Compounds ,Materials science ,Adhesive bonding ,Dental Cements ,chemistry.chemical_element ,02 engineering and technology ,engineering.material ,Metal ,03 medical and health sciences ,0302 clinical medicine ,Materials Testing ,General Materials Science ,General Dentistry ,Acrylic resin ,Bond strength ,Dental Bonding ,030206 dentistry ,021001 nanoscience & nanotechnology ,Copper ,Resin Cements ,Thiohydantoins ,chemistry ,Mechanics of Materials ,visual_art ,visual_art.visual_art_medium ,engineering ,Gold Alloys ,Methacrylates ,Noble metal ,Adhesive ,Shear Strength ,0210 nano-technology ,Nuclear chemistry ,Palladium - Abstract
Objective The purpose of this study was to assess the effects of an experimental primer containing acetone solution and a sulfur-containing functional monomer, 10-methacryloyloxydecyl-(2-thiohydantoin-4-yl)propionate (MDTHP), on the bonds between noble metals and acrylic resin. Methods The experimental primer used as the control for comparison consisted of 6-(4-vinylbenzyl-n-propyl)amino-1,3,5-triazine-2,4-dithione (VBATDT) in acetone. These primers were prepared as equimolar functional monomers (0.1 mol%). A self-polymerizing acrylic resin initiated with tri-n-butylborane (TBB) was used as the luting agent. Four elemental metal disks (silver, copper, palladium, and gold) were used as adherend specimens. All the disks were wet-ground with silicon carbide paper (#1500). Bonding reactions were performed on 12 combinations of the four metals, and the disks were either primed with MDTHP or VBATDT or were unprimed (control). Shear bond strengths were determined pre- and post-thermocycling (5–55 °C, dwell time 60 s, 20,000 cycles). The results were statistically analyzed via a non-parametric test (α = 0.05). Results The post-thermocycling shear bond strengths of the MDTHP primer were as follows (median, n = 11): 13.2 MPa on silver, 25.9 MPa on copper, 4.1 MPa on palladium, and 11.3 MPa on gold. The MDTHP primer showed higher post-thermocycling shear bond strength on all the four metals. Additionally, on silver and copper, the MDTHP bond strengths were higher than on the other metals. Significance Within the limitation of current of experimental setting, the MDTHP compound may be applicable as a functional monomer for bonding noble metal alloys.
- Published
- 2021
- Full Text
- View/download PDF