1. A Visually Apparent and Quantifiable CT Imaging Feature Identifies Biophysical Subtypes of Pancreatic Ductal Adenocarcinoma
- Author
-
Michael P. Kim, Eric P. Tamm, Kim A. Reiss, Peter C. Park, Brian P. Hobbs, Shun Yu, Vittorio Cristini, Anil Chauhan, Naveen Garg, Jeffrey E. Lee, Prajnan Das, Deyali Chatterjee, Huaming Yan, Anirban Maitra, Eugene J. Koay, Cullen M. Taniguchi, Huamin Wang, Milind Javle, Yeonju Lee, F. Anthony San Lucas, Ahmed M. Amer, John Lowengrub, Dali Li, Matthew H.G. Katz, Christopher H. Crane, Mauro Ferrari, Gauri R. Varadhachary, Priya Bhosale, Mohamed Zaid, Rong Ye, Newsha Nikzad, Rachna T. Shroff, Ya'an Kang, Robert A. Wolff, Jason B. Fleming, Dalia Elganainy, Mayrim V. Rios Perez, and Muayad F. Almahariq
- Subjects
0301 basic medicine ,Cancer Research ,Pathology ,medicine.medical_specialty ,endocrine system diseases ,Biopsy ,DNA Mutational Analysis ,Adenocarcinoma ,Article ,03 medical and health sciences ,0302 clinical medicine ,Stroma ,Cell Line, Tumor ,Exome Sequencing ,Parenchyma ,Image Processing, Computer-Assisted ,Carcinoma ,medicine ,Humans ,Neoplasm Metastasis ,Pathological ,Neoplasm Staging ,Neoplasm Grading ,medicine.diagnostic_test ,business.industry ,Models, Theoretical ,medicine.disease ,Combined Modality Therapy ,Immunohistochemistry ,Tumor Burden ,030104 developmental biology ,Oncology ,030220 oncology & carcinogenesis ,Cancer cell ,Tomography, X-Ray Computed ,business ,Algorithms ,Carcinoma, Pancreatic Ductal - Abstract
Purpose: Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous disease with variable presentations and natural histories of disease. We hypothesized that different morphologic characteristics of PDAC tumors on diagnostic computed tomography (CT) scans would reflect their underlying biology. Experimental Design: We developed a quantitative method to categorize the PDAC morphology on pretherapy CT scans from multiple datasets of patients with resectable and metastatic disease and correlated these patterns with clinical/pathologic measurements. We modeled macroscopic lesion growth computationally to test the effects of stroma on morphologic patterns, hypothesizing that the balance of proliferation and local migration rates of the cancer cells would determine tumor morphology. Results: In localized and metastatic PDAC, quantifying the change in enhancement on CT scans at the interface between tumor and parenchyma (delta) demonstrated that patients with conspicuous (high-delta) tumors had significantly less stroma, higher likelihood of multiple common pathway mutations, more mesenchymal features, higher likelihood of early distant metastasis, and shorter survival times compared with those with inconspicuous (low-delta) tumors. Pathologic measurements of stromal and mesenchymal features of the tumors supported the mathematical model's underlying theory for PDAC growth. Conclusions: At baseline diagnosis, a visually striking and quantifiable CT imaging feature reflects the molecular and pathological heterogeneity of PDAC, and may be used to stratify patients into distinct subtypes. Moreover, growth patterns of PDAC may be described using physical principles, enabling new insights into diagnosis and treatment of this deadly disease.
- Published
- 2018
- Full Text
- View/download PDF