1. Data integration enables global biodiversity synthesis
- Author
-
Joseph T. Miller, J. Mason Heberling, Dmitry Schigel, Scott Weingart, and Daniel Noesgaard
- Subjects
0106 biological sciences ,Databases, Factual ,Global Biodiversity Information Facility (GBIF) ,Biodiversity ,Biodiversity informatics ,computer.software_genre ,010603 evolutionary biology ,01 natural sciences ,scientometrics ,03 medical and health sciences ,community science ,Regional science ,Animals ,Humans ,Applied research ,Macroecology ,030304 developmental biology ,0303 health sciences ,Multidisciplinary ,biological collections ,Museums ,Scientometrics ,Biological Sciences ,Classification ,Geography ,Public participation ,biodiversity informatics ,computer ,Environmental Sciences ,Global biodiversity ,Data integration - Abstract
Significance As anthropogenic impacts to Earth systems accelerate, biodiversity knowledge integration is urgently required to support responses to underpin a sustainable future. Consolidating information from disparate sources (e.g., community science programs, museums) and data types (e.g., environmental, biological) can connect the biological sciences across taxonomic, disciplinary, geographical, and socioeconomic boundaries. In an analysis of the research uses of the world’s largest cross-taxon biodiversity data network, we report the emerging roles of open-access data aggregation in the development of increasingly diverse, global research. These results indicate a new biodiversity science landscape centered on big data integration, informing ongoing initiatives and the strategic prioritization of biodiversity data aggregation across diverse knowledge domains, including environmental sciences and policy, evolutionary biology, conservation, and human health., The accessibility of global biodiversity information has surged in the past two decades, notably through widespread funding initiatives for museum specimen digitization and emergence of large-scale public participation in community science. Effective use of these data requires the integration of disconnected datasets, but the scientific impacts of consolidated biodiversity data networks have not yet been quantified. To determine whether data integration enables novel research, we carried out a quantitative text analysis and bibliographic synthesis of >4,000 studies published from 2003 to 2019 that use data mediated by the world’s largest biodiversity data network, the Global Biodiversity Information Facility (GBIF). Data available through GBIF increased 12-fold since 2007, a trend matched by global data use with roughly two publications using GBIF-mediated data per day in 2019. Data-use patterns were diverse by authorship, geographic extent, taxonomic group, and dataset type. Despite facilitating global authorship, legacies of colonial science remain. Studies involving species distribution modeling were most prevalent (31% of literature surveyed) but recently shifted in focus from theory to application. Topic prevalence was stable across the 17-y period for some research areas (e.g., macroecology), yet other topics proportionately declined (e.g., taxonomy) or increased (e.g., species interactions, disease). Although centered on biological subfields, GBIF-enabled research extends surprisingly across all major scientific disciplines. Biodiversity data mobilization through global data aggregation has enabled basic and applied research use at temporal, spatial, and taxonomic scales otherwise not possible, launching biodiversity sciences into a new era.
- Published
- 2021