1. The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion
- Author
-
Allison J. Jackson, Alex Mogilner, David J. P. Ferguson, Gurman S. Pall, Markus Meissner, Nicole Andenmatten, Jennifer Ann Black, Isabelle Tardieux, Jamie Whitelaw, and Saskia Egarter
- Subjects
Gliding motility ,Protozoan Proteins ,lcsh:Medicine ,Actin Filaments ,Pathogenesis ,Protozoology ,Pathology and Laboratory Medicine ,Toxoplasma Gondii ,Gene Knockout Techniques ,Animal Cells ,Myosin ,Molecular Cell Biology ,Medicine and Health Sciences ,lcsh:Science ,Protozoans ,0303 health sciences ,Nonmuscle Myosin Type IIB ,biology ,Nonmuscle Myosin Type IIA ,030302 biochemistry & molecular biology ,Cell biology ,Cell Motility ,Phenotype ,Eukaryotic Cells ,Infectious Diseases ,Host-Pathogen Interactions ,Cellular Types ,Toxoplasma ,Locomotion ,Toxoplasmosis ,Research Article ,Cell Physiology ,Biophysics ,Motility ,Research and Analysis Methods ,Microbiology ,Motor protein ,Microneme ,03 medical and health sciences ,Model Organisms ,parasitic diseases ,Cell Adhesion ,Genetics ,Parasitic Diseases ,Theoretical Biology ,Actin ,030304 developmental biology ,Protozoan Infections ,Protozoan Models ,lcsh:R ,Organisms ,Toxoplasma gondii ,Membrane Proteins ,Biology and Life Sciences ,Cell Biology ,biology.organism_classification ,Parasitic Protozoans ,Cytosol ,Membrane Trafficking ,Parasitology ,lcsh:Q ,Gene Function - Abstract
Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite own actomyosin system and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility. Now published as: PLOS One, doi:10.1371/journal.pone.0091819
- Published
- 2014
- Full Text
- View/download PDF