1. Evolutionary conservation of centriole rotational asymmetry in the human centrosome
- Author
-
Q. Delobelle, M. Boumendjel, Juliette Azimzadeh, Noémie Gaudin, B. Reina-San-Martin, M. Bouix, L. Maniscalco, Dmitry Ershov, Vincent Heyer, T. B. N. Phan, C. Pioche-Durieu, P. Martin Gil, Institut Jacques Monod (IJM (UMR_7592)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Hub d'analyse d'images - Image Analysis Hub (Platform) (IAH), Institut Pasteur [Paris] (IP)-Université Paris Cité (UPCité), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Agence Nationale de la Recherche (ANR-21-CE13-008)Fondation pour la Recherche Médicale (Graduate Student Fellowship)Fondation ARC pour la Recherche sur le Cancer (ARCPJA32020060002055)Ligue Contre le Cancer (RS16/75-105)Labex Who Am I? (Thematic Program), ANR-21-CE13-0008,ASCENTS,Étude d'une asymétrie structurelle nouvellement identifiée du centriole des vertébrés et de son impact sur le développement et la santé(2021), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Paris Cité, Equipe HAL, and Étude d'une asymétrie structurelle nouvellement identifiée du centriole des vertébrés et de son impact sur le développement et la santé - - ASCENTS2021 - ANR-21-CE13-0008 - AAPG2021 - VALID
- Subjects
Centriole ,[SDV]Life Sciences [q-bio] ,Context (language use) ,Cell Cycle Proteins ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Biology ,Ciliopathies ,Microtubules ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,0302 clinical medicine ,Microtubule ,Ciliogenesis ,[SDV.BC.BC] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Animals ,Humans ,Cilia ,Cytoskeleton ,030304 developmental biology ,Centrioles ,Centrosome ,0303 health sciences ,General Immunology and Microbiology ,General Neuroscience ,General Medicine ,Cell biology ,Ultrastructure ,Microtubule-Associated Proteins ,030217 neurology & neurosurgery - Abstract
Centrioles are formed by microtubule triplets in a nine-fold symmetric arrangement. In flagellated protists and in animal multiciliated cells, accessory structures tethered to specific triplets render the centrioles rotationally asymmetric, a property that is key to cytoskeletal and cellular organization in these contexts. In contrast, centrioles within the centrosome of animal cells display no conspicuous rotational asymmetry. Here, we uncover rotationally asymmetric molecular features in human centrioles. Using ultrastructure expansion microscopy, we show that LRRCC1, the ortholog of a protein originally characterized in flagellate green algae, associates preferentially to two consecutive triplets in the distal lumen of human centrioles. LRRCC1 partially co-localizes and affects the recruitment of another distal component, C2CD3, which also has an asymmetric localization pattern in the centriole lumen. Together, LRRCC1 and C2CD3 delineate a structure reminiscent of a filamentous density observed by electron microscopy in flagellates, termed the ‘acorn’. Functionally, the depletion of LRRCC1 in human cells induced defects in centriole structure, ciliary assembly and ciliary signaling, supporting that LRRCC1 cooperates with C2CD3 to organizing the distal region of centrioles. Since a mutation in the LRRCC1 gene has been identified in Joubert syndrome patients, this finding is relevant in the context of human ciliopathies. Taken together, our results demonstrate that rotational asymmetry is an ancient property of centrioles that is broadly conserved in human cells. Our work also reveals that asymmetrically localized proteins are key for primary ciliogenesis and ciliary signaling in human cells.
- Published
- 2022
- Full Text
- View/download PDF