1. Determination of fatty acids profile in original brown cows dairy products and relationship with alpine pasture farming system
- Author
-
Valerio Bronzo, Laura Menchetti, Tanja Peric, Daniele Negroni, Doina Danes, Gabriele Brecchia, Luca Maria Chiesa, Sara Panseri, Stella Agradi, Giulio Curone, Daniele Vigo, Agradi S, Curone G, Negroni D, Vigo D, Brecchia G, Bronzo V, Panseri S, Chiesa LM, Peric T, Danes D, and Menchetti L
- Subjects
Conjugated linoleic acid ,Biology ,Pasture ,Article ,cheese ,lipids ,03 medical and health sciences ,Rumen ,chemistry.chemical_compound ,lcsh:Zoology ,Grazing ,grazing ,lcsh:QL1-991 ,Food science ,Fatty acids ,030304 developmental biology ,0303 health sciences ,geography ,milk ,lcsh:Veterinary medicine ,geography.geographical_feature_category ,General Veterinary ,business.industry ,0402 animal and dairy science ,food and beverages ,04 agricultural and veterinary sciences ,040201 dairy & animal science ,De novo synthesis ,Original Brown cow ,chemistry ,Agriculture ,lcsh:SF600-1100 ,Animal Science and Zoology ,Fermentation ,lipids (amino acids, peptides, and proteins) ,Gas chromatography ,fatty acid ,business ,alpine pasture ,Alpine pasture ,Cheese ,Lipids ,Milk - Abstract
This study aimed to evaluate the relationships between fatty acids and the pattern that most contributes to discriminate between two farming systems, in which the main difference was the practice, or not, of alpine summer-grazing. Milk and cheese were sampled every month in two farms of Original Brown cows identical under geographical location and management during no grazing season point of view in the 2018 season. Fatty acids concentrations were determined by gas chromatography. The principal component analysis extracted three components (PCs). Mammary gland de novo synthetized fatty acids (C14:0, C14:1 n9, and C16:0) and saturated and monosaturated C18 fatty acids (C18:0, C18:1 n9c) were inversely associated in the PC1, PC2 included polyunsaturated C18 fatty acids (C18:2 n6c, C18:3 n3) and C15:0 while conjugated linoleic acid (CLA n9c, n11t) and fatty acids containing 20 or more carbon atoms (C21:0, C20:5 n3) were associated in the PC3. The processes of rumen fermentation and de novo synthesis in mammary gland that are, in turn, influenced by diet, could explain the relationships between fatty acids within each PC. The discriminant analyses showed that the PC2 included the fatty acids profile that best discriminated between the two farming systems, followed by PC3 and, lastly, PC1. This model, if validated, could be an important tool to the dairy industry.
- Published
- 2020