About 30 years ago, first reports have appeared in the literature on successful substitution of gastrointestinal wall defects by synthetic materials. An either absorbable or non-absorbable polymer patch sutured into a full-thickness wall defect of stomach, small intestine, and even colon of different animal species generally showed to be initially integrated and overgrown by neomucosa, and eventually absorbed or intraor extraluminally extruded (Thompson et al., 1986; Harmon et al., 1979; Contieri et al., 1980; Smyrnis, 1982). Though this approach has been revived in several publications reporting good results (Oh et al., 2002; Uzun et al., 2010), treatment of damaged bowel by implantation of synthetic material has never gained general acceptance in the surgical community, and is, therefore, out of common clinical practice. This may be due to the general concern regarding the use of synthetic material in tissue which is naturally colonized with bacteria, as it is particularly the case in the colon. More recently, also natural materials like collagen sponge or acellular matrix have been tested for their ability either to support healing of an intestinal wall damage or to entirely substitute a full thickness defect. Implantation of patches of these natural biomaterials yielded good results with respect to histological and, to some extent, even functional reconstitution (Wang et al., 2005; Wang et al., 2003; Demirbilek et al., 2003; Badylak, S. et al., 2000; Isch et al., 2001; Kajitani et al., 2001; Mutter et al., 1996). As far as concerns the interposition of a synthetic or natural scaffold of tubular shape into esophagus or small intestine, results are less promising. Poor mucosal regeneration, stricture formation or high mortality rate of the experimental animals due to anastomotic leaks were reported, no matter whether the implanted biomaterial was synthetic absorbable (Thompson et al., 1986), non-absorbable (Fukushima et al., 1983; Watson et al., 1980), or of natural origin (Badylak, S. et al., 2000; Badylak, S.F., 2005; Chen & Badylak, 2001). There are no results reported in the current literature dealing with implantation of a tubular scaffold into the large intestine. In recent years there is a growing effort being done to apply tissue engineering methods for the complete, thus tubular, reconstruction of gastrointestinal organs. A driving force of the endeavours of gastrointestinal tissue engineering is the intention to circumvent transplantation and the associated lifetime need for immunosuppression as the sole alternative to the complete absence of the respective organ. Since loss of the entire colon is absolutely compatible with life, this is not a condition that would require transplantation, indeed. However, total colectomy leads to important changes in enterohepatic circulation