1. Evaluation of Macro- and Micro-Geometry of Models Made of Photopolymer Resins Using the PolyJet Method.
- Author
-
Turek, Paweł, Bazan, Anna, Budzik, Grzegorz, Dziubek, Tomasz, and Przeszłowski, Łukasz
- Subjects
- *
OPTICAL measurements , *GEOMETRIC surfaces , *SURFACE roughness , *3-D printers , *ARITHMETIC mean - Abstract
Additive manufacturing (AM) techniques are among the fastest-growing technologies for producing even the most geometrically complex models. Unfortunately, the lack of development of metrology guidelines for these methods, related to dimensional and geometry accuracy and surface roughness, significantly limits the commercialization of finished products manufactured using these methods. This paper aims to evaluate the macro- and micro-geometry of models manufactured using the PolyJet method from three types of photopolymer resins: Digital ABS Plus, RGD 720, and Vero Clear. For this purpose, test parts were designed and then manufactured on an Object 350 Connex3 3D printer. The Atos II Triple Scan optical system and the InfiniteFocusG4 microscope were used to evaluate macro- and micro-geometry, respectively. For both systems, measurement procedures were developed to obtain statistical results for evaluating geometric accuracy and surface roughness parameters. In the case of macro-geometry, for Digital ABS Plus and Vero Clear materials, 50% of the central deviations (between first quartile Q1 and third quartile Q3) lie within the range (−0.06, 0.03 mm) and for RGD 720 material within the range (−0.08, 0.01 mm). For micro-geometry, the arithmetic mean height (Sa) values for the Digital ABS Plus and Vero Clear samples were approximately 1.6 and 2.0 µm, respectively, while for RGD 720, it was 15.9 µm. The total roughness height expressed by reduced peak height (Spk) + core height (Sk) + reduced dale depth (Svk) for the Digital ABS Plus and Vero Clear samples was approximately 9.1 and 10.5 µm, respectively, while for the RGD 720, it was 101.9 µm. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF