1. Performance comparison of the Shack-Hartmann and pyramid wavefront sensors with a laser guide star for 40 m telescopes.
- Author
-
Oyarzún, F., Heritier, C., Chambouleyron, V., Fusco, T., Rouquette, P., and Neichel, B.
- Subjects
WAVEFRONT sensors ,ADAPTIVE optics ,MIRRORS ,PYRAMIDS ,NOISE - Abstract
Context. Upcoming giant segmented mirror telescopes will use laser guide stars (LGS) for their adaptive optics (AO) systems. Two options of wavefront sensors (WFSs) are the Shack-Hartmann wavefront sensor (SHWFS) and the pyramid wavefront sensor (PWFS). Aims. In this paper, we compare the noise performance of the PWFS and the SHWFS. We aim to identify which of the two is best to use in the context of a single or tomographic configuration. Methods. To compute the noise performance, we extended a noise model developed for the PWFS to be used with the SHWFS. To do this, we expressed the centroiding algorithm of the SHWFS as a matrix-vector multiplication, which allowed us to use the statistics of noise to compute its propagation through the AO loop. We validated the noise model with end-to-end simulations for telescopes of 8 and 16 m in diameter. Results. For an AO system with only one WFS, we found that given the same number of subapertures, the PWFS outperforms the SHWFS. For a 40 m telescope, the limiting magnitude of the PWFS is around one magnitude higher than the SHWFS. When using multiple WFS and a generalized least-squares estimator to combine the signal, our model predicts that in a tomographic system, the SHWFS performs better than the PWFS (with a limiting magnitude that is higher by a 0.3 magnitude. When using sub-electron RON detectors for the PWFS, the performance quality is almost identical for the two WFSs. Conclusions. We find that when using a single WFS with LGS, PWFS is a better alternative than the SH. For a tomographic system, both sensors would give roughly the same performance. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF