1. Gender-specific effects of intrauterine growth restriction on the adipose tissue of adult rats: a proteomic approach.
- Author
-
de Souza, Adriana Pereira, Pedroso, Amanda Paula, Watanabe, Regina Lúcia Harumi, Dornellas, Ana Paula Segantine, Boldarine, Valter Tadeu, Laure, Helen Julie, do Nascimento, Claudia Maria Oller, Oyama, Lila Missae, Rosa, José Cesar, and Ribeiro, Eliane Beraldi
- Subjects
FETAL development ,ADIPOSE tissue physiology ,LABORATORY rats ,HOMEOSTASIS ,PROTEOMICS ,GENETICS - Abstract
Background: Intrauterine growth restriction (IUGR) may program metabolic alterations affecting physiological functions and lead to diseases in later life. The adipose tissue is an important organ influencing energy homeostasis. The present study was aimed at exploring the consequences of IUGR on the retroperitoneal adipose tissue of adult male and female rats, using a proteomic approach. Methods and Results: Pregnant Wistar rats were fed with balanced chow, either ad libitum (control group) or restricted to 50 % of control intake (restricted group) during the whole gestation. The offspring were weaned to ad libitum chow and studied at 4 months of age. Retroperitoneal fat was analyzed by two-dimensional gel electrophoresis followed by mass spectrometry. Both male and female restricted groups had low body weight at birth and at weaning but normal body weight at adulthood. The restricted males had normal fat pads weight and serum glucose levels, with a trend to hyperinsulinemia. The restricted females had increased fat pads weight with normal glucose and insulin levels. The restricted males showed up-regulated levels of proteasome subunit α type 3, branched-chain-amino-acid aminotransferase, elongation 1- alpha 1, fatty acid synthase levels, cytosolic malate dehydrogenase and ATP synthase subunit alpha. These alterations point to increased proteolysis and lipogenesis rates and favoring of ATP generation. The restricted females showed down-regulated levels of L-lactate dehydrogenase perilipin-1, mitochondrial branched-chain alpha-keto acid dehydrogenase E1, and transketolase. These findings suggest impairment of glycemic control, stimulation of lipolysis and inhibition of proteolysis, pentose phosphate pathway and lipogenesis rates. In both genders, several proteins involved in oxidative stress and inflammation were affected, in a pattern compatible with impairment of these responses. Conclusions: The proteomic analysis of adipose tissue showed that, although IUGR affected pathways of substrate and energy metabolism in both males and females, important gender differences were evident. While IUGR males displayed alterations pointing to a predisposition to later development of obesity, the alterations observed in IUGR females pointed to a metabolic status of established obesity, in agreement with their increased fat pads mass. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF