1. Quantification of fat fraction in lumbar vertebrae: correlation with age and implications for bone marrow dosimetry in molecular radiotherapy.
- Author
-
Salas-Ramirez M, Tran-Gia J, Kesenheimer C, Weng AM, Kosmala A, Heidemeier A, Köstler H, and Lassmann M
- Subjects
- Adult, Aged, Aged, 80 and over, Bone Marrow radiation effects, Female, Healthy Volunteers, Humans, Lumbar Vertebrae radiation effects, Male, Middle Aged, Radiometry, Retrospective Studies, Young Adult, Adiposity, Aging, Bone Marrow pathology, Lumbar Vertebrae anatomy & histology, Magnetic Resonance Imaging methods, Magnetic Resonance Spectroscopy methods, Phantoms, Imaging
- Abstract
Absorbed dose to active bone marrow is a predictor of hematological toxicity in molecular radiotherapy. Due to the complex composition of bone marrow tissue, the necessity to improve the personalized dosimetry has led to the application of non-conventional imaging methods in nuclear medicine. The aim of this study is to apply magnetic resonance imaging (MRI) for quantification of the fat fraction in lumbar vertebrae and to analyze its implications for bone marrow dosimetry. First, a highly accelerated two-point Dixon MRI sequence for fat-water separation was validated in a 3T system against the magnetic resonance spectroscopy (MRS) gold standard. The validation was performed in a fat-water phantom composed of 11 vials with different fat fractions between 0% and 100%, and subsequently repeated in the lumbar vertebrae of three healthy volunteers. Finally, a retrospective study was performed by analyzing the fat fraction in five lumbar vertebrae of 44 patients scanned with the two-point Dixon sequence. The two-point Dixon phantom acquisition showed a good agreement (maximum difference = 2.9%) between the nominal fat fraction and MRS. In the volunteers, a statistical analysis showed a non-significant difference (p = 0.19) between MRI and MRS. In the patients, gender-specific linear fits for female and male data indicated that the age-dependent marrow conversion (red → yellow marrow) is slower in males (0.3% per year) than in females (0.5% per year). Lastly, the fat fraction values showed a considerable variability in patients of similar ages and the same gender. Two-point Dixon MRI enables a non-invasive and spatially resolved quantification of the fat fraction in bone marrow. Our study provides important evidence on the differences in marrow conversion between females and males. In addition, differences were observed in the cellularity values of the International Commission on Radiological Protection (ICRP) reference man (0.7) and the median values obtained in our patient group. These observations lead to the conclusion that the fat fraction in bone marrow should be considered as a patient-specific variable in clinical dosimetry procedures.
- Published
- 2018
- Full Text
- View/download PDF