1. Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium.
- Author
-
Yun, Je-Yeon, Boedhoe, Premika SW, Vriend, Chris, Jahanshad, Neda, Abe, Yoshinari, Ameis, Stephanie H, Anticevic, Alan, Arnold, Paul D, Batistuzzo, Marcelo C, Benedetti, Francesco, Beucke, Jan C, Bollettini, Irene, Bose, Anushree, Brem, Silvia, Calvo, Anna, Cheng, Yuqi, Cho, Kang Ik K, Ciullo, Valentina, Dallaspezia, Sara, Denys, Damiaan, Feusner, Jamie D, Fouche, Jean-Paul, Giménez, Mònica, Gruner, Patricia, Hibar, Derrek P, Hoexter, Marcelo Q, Hu, Hao, Huyser, Chaim, Ikari, Keisuke, Kathmann, Norbert, Kaufmann, Christian, Koch, Kathrin, Lazaro, Luisa, Lochner, Christine, Marques, Paulo, Marsh, Rachel, Martínez-Zalacaín, Ignacio, Mataix-Cols, David, Menchón, José M, Minuzzi, Luciano, Morgado, Pedro, Moreira, Pedro, Nakamae, Takashi, Nakao, Tomohiro, Narayanaswamy, Janardhanan C, Nurmi, Erika L, O'Neill, Joseph, Piacentini, John, Piras, Fabrizio, Piras, Federica, Reddy, YC Janardhan, Sato, Joao R, Simpson, H Blair, Soreni, Noam, Soriano-Mas, Carles, Spalletta, Gianfranco, Stevens, Michael C, Szeszko, Philip R, Tolin, David F, Venkatasubramanian, Ganesan, Walitza, Susanne, Wang, Zhen, van Wingen, Guido A, Xu, Jian, Xu, Xiufeng, Zhao, Qing, ENIGMA-OCD working group, Thompson, Paul M, Stein, Dan J, van den Heuvel, Odile A, and Kwon, Jun Soo
- Subjects
ENIGMA-OCD working group ,Brain ,Cerebral Cortex ,Neural Pathways ,Humans ,Magnetic Resonance Imaging ,Obsessive-Compulsive Disorder ,Image Processing ,Computer-Assisted ,Adult ,Female ,Male ,brain structural covariance network ,graph theory ,illness duration ,obsessive-compulsive disorder ,pharmacotherapy ,Medical and Health Sciences ,Psychology and Cognitive Sciences ,Neurology & Neurosurgery - Abstract
Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P
- Published
- 2020