1. Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining
- Author
-
Pierre Abad, Etienne Danchin, Amandine Campan-Fournier, Nicolas Nottet, Marc Magliano, François Artiguenave, Martine Da Rocha, Marie-Jeanne Arguel, Karine Labadie, Laetitia Perfus-Barbeoch, Julie Guy, Corinne Da Silva, Marie-Noëlle Rosso, Danchin, Etienne, Institut Sophia Agrobiotech (ISA), Institut National de la Recherche Agronomique (INRA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Genoscope - Centre national de séquençage [Evry] (GENOSCOPE), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), ANR NEMATARGETS, Institut Sophia Agrobiotech [Sophia Antipolis] (ISA), Institut National de la Recherche Agronomique (INRA)-Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Recherche Agronomique (INRA)
- Subjects
0106 biological sciences ,[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,interférence à arn ,parasitisme ,01 natural sciences ,Genome ,RNA interference ,gène cible ,Meloidogyne incognita ,nématode à galles ,lcsh:QH301-705.5 ,protéome ,pathologie végétale ,Genes, Helminth ,gène régulateur ,2. Zero hunger ,Genetics ,0303 health sciences ,Vegetal Biology ,Effector ,Pan-genome ,food and beverages ,santé humaine ,nématicide ,Agricultural sciences ,lutte contre les ravageurs ,ravageur de culture ,pollution environnementale ,RNA Interference ,Research Article ,lcsh:Immunologic diseases. Allergy ,nématode des plantes ,Immunology ,phytopathologie ,Biology ,approche génomique ,Microbiology ,identification de gènes ,nématode parasite ,03 medical and health sciences ,interaction plante parasite ,Virology ,Botany ,Animals ,Humans ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,séquence silencer ,Tylenchoidea ,Molecular Biology ,Gene ,Plant Diseases ,030304 developmental biology ,Comparative genomics ,biology.organism_classification ,meloidogyne incognita ,Nematode ,lcsh:Biology (General) ,génie génétique ,Parasitology ,lcsh:RC581-607 ,Sciences agricoles ,Biologie végétale ,Genome-Wide Association Study ,010606 plant biology & botany - Abstract
Root-knot nematodes are globally the most aggressive and damaging plant-parasitic nematodes. Chemical nematicides have so far constituted the most efficient control measures against these agricultural pests. Because of their toxicity for the environment and danger for human health, these nematicides have now been banned from use. Consequently, new and more specific control means, safe for the environment and human health, are urgently needed to avoid worldwide proliferation of these devastating plant-parasites. Mining the genomes of root-knot nematodes through an evolutionary and comparative genomics approach, we identified and analyzed 15,952 nematode genes conserved in genomes of plant-damaging species but absent from non target genomes of chordates, plants, annelids, insect pollinators and mollusks. Functional annotation of the corresponding proteins revealed a relative abundance of putative transcription factors in this parasite-specific set compared to whole proteomes of root-knot nematodes. This may point to important and specific regulators of genes involved in parasitism. Because these nematodes are known to secrete effector proteins in planta, essential for parasitism, we searched and identified 993 such effector-like proteins absent from non-target species. Aiming at identifying novel targets for the development of future control methods, we biologically tested the effect of inactivation of the corresponding genes through RNA interference. A total of 15 novel effector-like proteins and one putative transcription factor compatible with the design of siRNAs were present as non-redundant genes and had transcriptional support in the model root-knot nematode Meloidogyne incognita. Infestation assays with siRNA-treated M. incognita on tomato plants showed significant and reproducible reduction of the infestation for 12 of the 16 tested genes compared to control nematodes. These 12 novel genes, showing efficient reduction of parasitism when silenced, constitute promising targets for the development of more specific and safer control means., Author Summary Plant-parasitic nematodes are annually responsible for more than $100 billion crop yield loss worldwide and those considered as causing most of the damages are root-knot nematodes. These nematodes used to be controlled by chemicals that are now banned from use because of their poor specificity and high toxicity for the environment and human health. In the absence of sustainable alternative solutions, new control means, more specifically targeted against these nematodes and safe for the environment are needed. We searched in root-knot nematode genomes, genes conserved in various plant-damaging species while otherwise absent from the genomes of non target species such as those of chordates, plants, annelids, insect pollinators and mollusks. These genes are probably important for plant parasitism and their absence from non-target species make them interesting candidates for the development of more specific and safer control means. Further bioinformatics pruning of this set of genes yielded 16 novel candidates that could be biologically tested. Using RNA interference, we knocked down each of these 16 genes in a root-knot nematode and tested the effect on plant parasitism efficiency. Out of the 16 tested genes, 12 showed a significant and reproducible diminution of infestation when silenced and are thus particularly promising.
- Published
- 2013
- Full Text
- View/download PDF