1. Alkali-stable GH11 endo-β-1,4 xylanase (XynB) from Bacillus subtilis strain CAM 21: application in hydrolysis of agro-industrial wastes, fruit/vegetable peels and weeds.
- Author
-
Monica P and Kapoor M
- Subjects
- Enzyme Stability, Hydrolysis, Agriculture, Bacillus subtilis enzymology, Bacterial Proteins chemistry, Endo-1,4-beta Xylanases chemistry, Fruit chemistry, Industrial Waste, Vegetables chemistry
- Abstract
GH11 endo-xylanases, due to their inherent structural and biochemical properties, are the key to efficient bioconversion of lignocellulosic biomass into value-added products. A GH11 endo-xylanase (XynB) from Bacillus subtilis strain CAM 21 was cloned, over-expressed and purified (Mw∼24 kDa) using Ni-NTA affinity chromatography. XynB showed optimum activity at pH 7.0 and 50°C and was stable (>88%) in a broad range of pH (4-11). The apparent Km
, Kcat and Kcat /Km of XynB were 2.9 mg/ml, 1961.2/sec, and 675.62 ml/mg/sec, respectively using birchwood xylan as substrate. XynB was a classical endo-xylanase as it hydrolyzed birchwood xylan to xylo-oligosaccharides and not xylose. Kinetic stability of XynB at 45-53°C was between 43-182 min. Secondary structure analysis of XynB using far-UV CD spectroscopy revealed presence of 51.85% β strands and 2.64% α helix and was consistent with the homology modeling studies. XynB hydrolyzed the xylan extracted from agro-industrial wastes and fruit/vegetable peels by releasing up to 670 mg/g of reducing sugars. The xylan extracted from weeds ( Ageratum conyzoides, Achyranthes aspera and Tridax procumbens ) had characteristic signatures of hemicelluloses and after XynB hydrolysis showed cracks, peeling and release of up to 135.2 mg/g reducing sugars.- Published
- 2021
- Full Text
- View/download PDF