This paper introduces an original approach to the joint inversion of airborne electromagnetic (EM) data for three-dimensional (3D) conductivity and chargeability models using hybrid finite difference (FD) and integral equation (IE) methods. The inversion produces a 3D model of physical parameters, which includes conductivity, chargeability, time constant, and relaxation coefficients. We present the underlying principles of this approach and an example of a high-resolution inversion of the data acquired by a new active time domain airborne EM system, TargetEM, in Ontario, Canada. The new TargetEM system collects high-quality multicomponent data with low noise, high power, and a small transmitter–receiver offset. This airborne system and the developed advanced inversion methodology represent a new effective method for mineral resource exploration. [ABSTRACT FROM AUTHOR]