1. Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata.
- Author
-
Wisecaver JH and Hackett JD
- Subjects
- Alveolata metabolism, Ciliophora cytology, Ciliophora genetics, Ciliophora metabolism, Cryptophyta cytology, Cryptophyta genetics, Cryptophyta metabolism, Evolution, Molecular, Peptides genetics, Peptides metabolism, Phylogeny, Sequence Analysis, DNA, Alveolata cytology, Alveolata genetics, Cell Nucleus genetics, Gene Expression Profiling, Plastids metabolism, Protozoan Proteins genetics, Protozoan Proteins metabolism
- Abstract
Background: Dinophysis is exceptional among dinoflagellates, possessing plastids derived from cryptophyte algae. Although Dinophysis can be maintained in pure culture for several months, the genus is mixotrophic and needs to feed either to acquire plastids (a process known as kleptoplastidy) or obtain growth factors necessary for plastid maintenance. Dinophysis does not feed directly on cryptophyte algae, but rather on a ciliate (Myrionecta rubra) that has consumed the cryptophytes and retained their plastids. Despite the apparent absence of cryptophyte nuclear genes required for plastid function, Dinophysis can retain cryptophyte plastids for months without feeding., Results: To determine if this dinoflagellate has nuclear-encoded genes for plastid function, we sequenced cDNA from Dinophysis acuminata, its ciliate prey M. rubra, and the cryptophyte source of the plastid Geminigera cryophila. We identified five proteins complete with plastid-targeting peptides encoded in the nuclear genome of D. acuminata that function in photosystem stabilization and metabolite transport. Phylogenetic analyses show that the genes are derived from multiple algal sources indicating some were acquired through horizontal gene transfer., Conclusions: These findings suggest that D. acuminata has some functional control of its plastid, and may be able to extend the useful life of the plastid by replacing damaged transporters and protecting components of the photosystem from stress. However, the dearth of plastid-related genes compared to other fully phototrophic algae suggests that D. acuminata does not have the nuclear repertoire necessary to maintain the plastid permanently.
- Published
- 2010
- Full Text
- View/download PDF